Distal gastric simulator based on a soft actuator

Simulador gástrico distal basado en un actuador blando

  • Luis Fernando Donis-Rabanales Universidad Nacional Autónoma de México
  • Monserrat Escalona-Ortiz Universidad Nacional Autónoma de México
  • Leopoldo Ruiz-Huerta Universidad Nacional Autónoma de México
  • Edmundo Brito de la Fuente Universidad Nacional Autónoma de México
  • Alberto Caballero-Ruiz Universidad Nacional Autónoma de México
  • Gabriel Ascanio-Gasca Universidad Nacional Autónoma de México
Palabras clave: Gastric flow, Pressure profiles, Simulator (en_US)
Palabras clave: Flujo gástrico, Perfiles de presión, Simulador (es_ES)

Resumen (en_US)

This paper describes the development of an in vitro gastric simulator that replicates the distal region of a human stomach. One of the fundamental objectives of this work is the development of a model with an anatomical appearance, able to mimic the contractile activity of gastric walls by means of soft actuators, to study the physical and chemical disintegration of solid foods as well as to visualize the distribution and the flow of gastric content. An instrumentation system was implemented to measure pressure profiles in the distal gastric simulator, based on an esophageal manometry catheter. A comparison between the pressure profiles obtained in the antral gastric simulator and other in vitro models was made, obtaining maximum values of 25 mmHg.

Resumen (es_ES)

Este artículo describe el desarrollo de un simulador gástrico in vitro que replica la región distal de un estómago humano. Uno de los objetivos fundamentales de este trabajo es el desarrollo de un modelo que cuente con una apariencia anatómica, capaz de imitar la actividad contráctil de las paredes gástricas por medio de actuadores blandos con el objetivo de estudiar la desintegración física y química de los alimentos sólidos, así como para visualizar la distribución y flujo del contenido gástrico al interior de nuestro modelo gástrico. Se implementó un sistema de instrumentación para medir los perfiles de presión en el simulador gástrico distal, basado en un catéter de manometría esofágica. Se realizó una comparación entre los perfiles de presión obtenidos en el simulador gástrico antral y otros modelos in vitro, obteniendo valores máximos de 25 mmHg.

Descargas

La descarga de datos todavía no está disponible.

Referencias

[1] M. Minekus, P. Marteau, R. Havenaar and J. Huis, “A multi-compartmental dynamic computer-controlled model simulating the stomach and small intestine”, ATLA, vol. 23, no. 2, pp. 197-209, 1994.
[2] M. Wickham, R. Faulks, J. Mann and G. Mandalari, “The Design, Operation, and Application of a Dynamic Gastric Model”, Dissolution Technologies, vol. 19, no. 3, pp. 15-22, 2012. https://doi.org/10.14227/DT190312P15
[3] F. Kong and R. Singh, “A Human Gastric Simulator (HGS) to Study Food Digestion in Human Stomach”, Journal of Food Science, vol. 75, no. 9, pp. 627-635, 2010. https://doi.org/10.1111/j.1750-3841.2010.01856.x
[4] L. Barros, C. Retamal, H. Torres, R. Zúñiga and E. Troncoso, “Development of an in vitro mechanical gastric system (IMGS) with realistic peristalsis to assess lipid digestibility”, Food Research International, vol. 90, pp. 216-225, 2016. https://doi.org/10.1016/j.foodres.2016.10.049
[5] S. Bellmann, J. Lelieveld, T. Gorissen, M. Minekus and R. Havenaar, “Development of an advanced in vitro model of the stomach and its evaluation versus human gastric physiology”, Food Research International, vol. 88, pp. 191-198, 2016. https://doi.org/10.1016/j.foodres.2016.01.030
[6] L. Chen, Y. Xu, T. Fan, Z. Liao, P. Wu, X. Wu and X. Chen, “Gastric emptying and morphology of a ‘near real’ in vitro human stomach model (RD-IV-HSM)”, Journal of Food Engineering, vol. 183, pp. 1-8, 2016. https://doi.org/10.1016/j.jfoodeng.2016.02.025
[7] F. Kong and R. Singh, “Disintegration of Solid Foods in Human Stomach”, Journal of Food Science, vol. 73, no. 5, pp. 67-80, 2008. https://doi.org/10.1111/j.1750-3841.2008.00766.x
[8] S. Maqbool, H. Parkman and F. Friedenberg, “Wireless Capsule Motility: Comparison of the SmartPill® GI Monitoring System with Scintigraphy for Measuring Whole Gut Transit”, Digestive Diseases and Sciences, vol. 54, no. 10, pp. 2167-2174, 2009. https://doi.org/10.1007/s10620-009-0899-9
[9] M. Vassallo, M. Camilleri, C. Prather, R. Hanson and G. Thomforde, “Measurement of axial forces during emptying from the human stomach”, American Journal of Physiology-Gastrointestinal and Liver Physiology, vol. 263, no. 2, pp. 230-239, 1992. https://doi.org/10.1152/ajpgi.1992.263.2.G230
[10] K. Indireshkumar, J. Brasseur, H. Faas, G. Hebbard, P. Kunz, J. Dent, C. Feinle, M. Li, P. Boesiger, M. Fried and W. Schwizer, “Relative contributions of “pressure pump” and “peristaltic pump” to gastric emptying”, American Journal of Physiology-Gastrointestinal and Liver Physiology, vol. 278, no. 4, pp. 604-616, 2000. https://doi.org/10.1152/ajpgi.2000.278.4.G604
[11] H. Okuzaki, “Progress and Current Status of Materials and Properties of Soft Actuators”, in K. Asaka, H. Okuzaki, Soft Actuators, Tokyo: Springer, pp. 3-18, 2014. https://doi.org/10.1007/978-4-431-54767-9_1
[12] G. Agarwal, N. Besuchet, B. Audergon and J. Paik, “Stretchable Materials for Robust Soft Actuators towards Assistive Wearable Devices”, Scientific Reports, vol. 6, no. 1, 2016. https://doi.org/10.1038/srep34224
[13] M. Ferrua and R. Singh, “Modeling the Fluid Dynamics in a Human Stomach to Gain Insight of Food Digestion”, Journal of Food Science, vol. 75, no. 7, pp. 151-162, 2010. https://doi.org/10.1111/j.1750-3841.2010.01748.x
Cómo citar
Donis-Rabanales, L. F., Escalona-Ortiz, M., Ruiz-Huerta, L., Brito de la Fuente, E., Caballero-Ruiz, A., & Ascanio-Gasca, G. (2020). Simulador gástrico distal basado en un actuador blando. Visión electrónica, 14(1). Recuperado a partir de https://revistas.udistrital.edu.co/index.php/visele/article/view/16352
Publicado: 2020-01-31
Sección
Visión Investigadora