Multi-agent navigation model based on bacterial quorum sensing

Modelo de navegación colectiva multi-agente basado en el quorum sensing bacterial

  • Edwar Jacinto Gómez Universidad Distrital Francisco José de Caldas
  • Mauricio Giral Universidad Santo Tomas
  • Fredy Hernán Martínez Sarmiento Universidad Distrital Francisco José de Caldas
Palabras clave: collective navigation, intensity gradient, quorum sensing (en_US)
Palabras clave: Navegación colectiva, gradiente de intensidad, quorum sensing (es_ES)

Resumen (en_US)

We present a model for the study, analysis, design and evaluation of collective multi-agent navigation for autonomous robots based on behaviors observed in bacteria. The system consists of a set of simple agents (artificial bacteria), which through readings and local interaction are self-organized to navigate along the environment. Given the parallel structure, also happens to be a very robust solution. We show the basic structure proposal for the design abstracting the characteristics of the biological model, together with an analysis of stability and convergence.

Resumen (es_ES)

Se presenta un modelo para el estudio, análisis, diseño y evaluación de navegación colectiva multi-agente para robots autónomos basado en comportamientos observados en bacterias. El sistema consiste de un conjunto de agentes sencillos (bacterias artificiales), los cuales a través de lecturas e interacciones locales se auto-organizan para navegar a lo largo del ambiente. Dada la estructura paralela, también resulta ser una solución muy robusta. Se muestra la estructura básica propuesta para el diseño abstrayendo las características del modelo biológico, en conjunto con un análisis de estabilidad y convergencia.


La descarga de datos todavía no está disponible.

Biografía del autor/a

Edwar Jacinto Gómez, Universidad Distrital Francisco José de Caldas
Ingeniero en Control Electrónico e Instrumentación, Magister en Ciencias de Información y las Comunicaciones. Profesor Universidad Distrital Francisco José de Caldas. Bogotá
Mauricio Giral, Universidad Santo Tomas
Ingeniero en Control Electrónico e Instrumentación, especialista en Bioingeniería, Estudiante de maestria en Ingenieria Electronica. Universidad Santo Tomás, Bogotá.
Fredy Hernán Martínez Sarmiento, Universidad Distrital Francisco José de Caldas
Ingeniero eléctrico, especialista en gestión de Proyectos, candidato a doctor en Ingeniería Informática. Profesor Universidad Distrital Francisco José de Caldas, Bogotá


Amorim, D., y Ventura, R. (2014). Towards efficient path planning of a mobile robot on rough terrain. En 2014 ieee international conference on autonomous robot systems and competitions (icarsc) (p. 22-27).

Besozzi, D., Cazzaniga, P., Mauri, G., y Pescini, D. (2011). Biosimware: A software for the modeling, simulation and analysis of biological systems. En M. Gheorghe, T. Hinze, G. Paun, G. Rozenberg, y A. Salomaa (Eds.), Membrane computing (Vol. 6501, p. 119-143). Springer Berlin Heidelberg.

Cho, J. H., y Kim, D. H. (2011). Intelligent feature selection by bacterial foraging algorithm and information theory. En Advanced communication and networking (Vol. 199, p. 238-244). Springer Berlin Heidelberg.

Connelly, B., y McKinley, P. (2011). Evolving social behavior in adverse environments. En G. Kampis, I. Karsai, y E. Szathmáry (Eds.), Advances in artificial life. darwin meets von neumann (Vol. 5777, p. 490-498). Springer Berlin Heidelberg.

Delgado, G. I., Casallas, R., y Jacinto, G. E. (2014). Path planning in static scenarios using image processing and cell decomposition. En 2014 ieee international autumn meeting on power, electronics and computing (ropec) (p. 1-5).

Freitas, R., y Gilbreath, W. (1980). Chapter 5: Replicating systems concepts: Self-replicating lunar factory and demostration. En Advanced automation for space missions, 1980 nasa/asee summer study.

Gómez, P., y Rodríguez, A. (2011). Simulating a rock-scissors-paper bacterial game with a discrete cellular automaton. En New challenges on bioinspired applications (Vol. 6687, p. 363-370). Springer Berlin Heidelberg.

Goni, A., Redondo, M., Arroyo, F., y Castellanos, J. (2011). Biocircuit design through engineering bacterial logic gates. Natural Computing, 10, 119-127.

Gonzalez, A., Ghaffarkhah, A., y Mostofi, Y. (2014). An integrated framework for obstacle mapping with see-through capabilities using laser and wireless channel measurements. IEEE Sensors Journal, 14(1), 25-38.

Goyal, J., y Nagla, K. (2014). A new approach of path planning for mobile robots. En 2014 international conference on advances in computing, communications and informatics icacci (p. 863-867).

Haifeng, W., Jiawei, Z., Guifeng, Z., y Yun, L. (2014). Has: Hierarchical a-star algorithm for big map navigation in special areas. En 2014 5th international conference on digital home (icdh) (p. 222-225).

Holman, M., Jacinto, E., y Martínez, F. (2015). Generación de ruta óptima para robots móviles a partir de segmentación de imágenes. Información Tecnológica, 26(2), 145-152.

Idsardi, W. (2006). A simple proof that optimality theory is computationally intractable. Linguistic Inquiry, 37(2), 271-275. (The MIT Press)

Jan, G. E., Chi-Chia, S., Wei, C., y Ting-Hsiang, L. (2014). An shortest path algorithm based on Delaunay triangulation. IEEE/ASME Transactions on Mechatronics, 19(2), 660-666.

Karafyllidis, I. G. (2011). Regulating the quorum sensing signalling circuit to control bacterial virulence: in silico analysis. IET Systems Biology, 5(2), 103-109.

Kuo-Ho, T., Tan-Phat, P., Chan-Yun, Y., y Wen-June, W. (2014). Image-based smooth path planning for wheeled robot. En 11th ieee international conference on control and automation (icca) (p. 203-207).

LaValle, S. M. (2006). Planning algorithms (1.a ed.). Cambridge University Press. Retrieved from

Li, C., y Wei, L. (2014). Adaptive artificial potential field approach for obstacle avoidance path planning. En 2014 seventh international symposium on computational intelligence and design (iscid) (Vol. 2, p. 429-432).

Lianhang, S., Min, L., Yang, L., Qing-Ying, Z., Jie, L., y Zhongya, W. (2014). A novel artificial bee colony optimization algorithm for global path planning of multi-robot systems. En 2014 ieee international conference on robotics and biomimetics (robio) (p. 1186-1191).

Mange, D., Goeke, M., Madon, D., Stauer, A., Tempesti, G., y Durand, S. (1996). Embryonics: A new family of coarse-grained field programmable gate array with self-repair and self-reproducing properties. LNCS Towards Evolvable Hardware, 1062, 197-220.

Martínez S., F. H., y Delgado, J. (2010). Hardware emulation of bacterial quorum sensing. En D.-S. Huang, Z. Zhao, V. Bevilacqua, y J. Figueroa (Eds.), Lecture notes in computer science 6215. advanced intelligent computing theories and applications (Vol. 6215, p. 329-336). Springer Berlin Heidelberg.

Martínez, F., y Delgado, J. (2010). Hardware emulation of bacterial quorum sensing. Advanced Intelligent Computing Theories and Applications, LNCS 6215, 329-336.

Mohammadi, A., Rahimi, M., y Suratgar, A. (2014). A new path planning and obstacle avoidance algorithm in dynamic environment. En 2014 22nd iranian conference on electrical engineering (icee) (p. 1301-1306).

Narayanan, V., Vernaza, P., Likhachev, M., y LaValle, S. M. (2013). Planning under topological constraints using beam-graphs. En 2013 ieee international conference on robotics and automation (icra) (p. 431-437).

Niu, B., Fan, Y., Tan, L., Rao, J., y Li, L. (2010). A review of bacterial foraging optimization part i: Background and development. En Advanced intelligent computing theories and applications (Vol. 93, p. 535-543). Springer Berlin Heidelberg.

Otero, A. M., Munoz, A., Bernández, M. I., y Fábregas, J. (2004). Quorum sensing el lenguaje de las bacterias (First Edition ed.). Spain: Acribia. (ISBN 9788420010465)

Prokopenko, M. (2008). Advances in applied self-organizing systems. Springer Berlin Heidelberg.

Shen, J., y Zhou, H. (2010). The dynamics of quorum sensing mediated by small rnas in vibrio harveyi. En Life system modeling and intelligent computing (Vol. 97, p. 177-184). Springer Berlin Heidelberg.

Tarakanov, A. O., y Dasgupata, D. (2000, Feb.). A formal model of an artificial immune system. Biosystems, 55(3), 151-158. (ISSN 0303-2647)

Taylor, A. F., Tinsley, M. R., Wang, F., Huang, Z., y Showalter, K. (2009). Dynamical quorum sensing and synchronization in large populations of chemical oscillators. Science, 323(5914), 614-617.

Unghui, L., Sangyol, Y., HyunChul, S., Vasseur, P., y Demonceaux, C. (2014). Local path planning in a complex environment for self-driving car. En 2014 ieee 4th annual international conference on cyber technology in automation, control, and intelligent systems (cyber) (p. 445-450).

Van-Dung, H., Dongwook, S., Kurnianggoro, L., y Kang-Hyun, J. (2014). Path planning and global trajectory tracking control assistance to autonomous vehicle. En 2014 11th international conference on ubiquitous robots and ambient intelligence (urai) (p. 646-650).

Wei-Che, Y., Chan-Yun, Y., Kuo-Ho, S., y Yi-Hong, T. (2014). Dynamic path planning under randomly distributed obstacle environment. En 2014 cacs international automatic control conference (cacs) (p. 138-143).

Wiedermann, J. (2011). Nanomachine computing by quorum sensing. En J. Kelemen y A. Kelemenova (Eds.), Computation, cooperation, and life (Vol. 6610, p. 203-215). Springer Berlin Heidelberg.

Xia, C., y Xiangmin, C. (2014). The uav dynamic path planning algorithm research based on voronoi diagram. En The 26th chinese control and decision conference (2014 ccdc) (p. 1069-1071).

Zang, T., He, Z., y Ye, D. (2010). Bacterial foraging optimization algorithm with particle swarm optimization strategy for distribution network reconfiguration. En Advances in swarm intelligence (Vol. 6145, p. 365-372). Springer Berlin Heidelberg.

Cómo citar
Jacinto Gómez, E., Giral, M., & Martínez Sarmiento, F. (2016). Modelo de navegación colectiva multi-agente basado en el quorum sensing bacterial. Tecnura, 20(47), 29-38.
Publicado: 2016-01-01

Artículos más leídos del mismo autor/a

1 2 3 > >>