Algoritmos para asignación de espectro en redes de radio cognitiva

Algorithms for spectrum allocation in cognitive radio networks

  • Cesar Hernández Universidad Distrital Francisco José de Caldas
  • Luis Fernando Pedraza Martínez Universidad Distrital Francisco José de Caldas
  • Fredy Hernán Martínez Sarmiento Universidad Distrital Francisco José de Caldas
Palabras clave: algorithm, spectrum allocation, cognitive radio, wireless networks, decision-making (en_US)
Palabras clave: algoritmo, asignación de espectro, radio cognitiva, redes inalámbricas, toma de decisiones (es_ES)

Resumen (es_ES)

Contexto: La asignación de espectro en las redes de radio cognitiva es un aspecto clave para reducir la latencia, incrementar la tasa de datos, aumentar el ancho de banda, mejorar la capacidad y cobertura, y optimizar el uso del espectro, garantizando la calidad de servicio necesaria para aplicaciones de tiempo-real y mejor-esfuerzo. 

Objetivo: Este artículo presenta una revisión sobre los algoritmos de asignación de espectro en redes de radio cognitiva, describiendo los algoritmos de asignación de espectro más relevantes y su clasificación de acuerdo con la literatura actual.

Método: El desarrollo de esta revisión se realizó a partir del análisis de publicaciones recientes de corriente principal con sus respectivas citas, tratando de proveer un marco referencial de la literatura actual sobre los algoritmos de asignación de espectro en redes de radio cognitiva.

Resultados: Los principales resultados determinan la importancia de una asignación de espectro inteligente, teniendo en cuenta la carga de tráfico, el comportamiento del usuario, los niveles de interferencia, la caracterización del espectro, el tipo de aplicación y la necesidad de múltiples canales de frecuencia.

Conclusión: Como conclusión es importante diseñar algoritmos adaptativos que permitan hacer un uso eficiente de las porciones disponibles del espectro licenciado. 

Resumen (en_US)

Context: Spectrum allocation in cognitive radio networks is a key aspect to reduce latency, increase data rate, increase bandwidth, improve capacity and coverage, and optimize the use of the spectrum, guaranteeing the quality of service required applications and best-effort and real-time.

Objective: This paper aims to present a review of the algorithms for spectrum allocation in cognitive radio networks, describing the relevant algorithms for spectrum allocation and its classification according to the current literature.

Method: The development of this review was conducted based on the analysis of recent publications of mainstream with their respective appointments, trying to provide a complete reference framework of the current literature on the algorithms for spectrum allocation in cognitive radio networks.

Results: The main results determine the importance of smart spectrum allocation, taking into account the traffic load, user behavior, interference levels, spectral characterization, the type of application and the need for multiple frequency channels.

Conclusion: In conclusion it is important to design adaptive algorithms to make efficient use of the available portions of the licensed spectrum.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Cesar Hernández, Universidad Distrital Francisco José de Caldas
Ingeniero electrónico, magíster en ciencias de la información y las comunicaciones, candidato a doctor en Ingeniería de Sistemas y Computación de la Universidad Nacional de Colombia. Docente e investigador de la Universidad Distrital Francisco José de Caldas, Bogotá.
Luis Fernando Pedraza Martínez, Universidad Distrital Francisco José de Caldas
Ingeniero Electrónico, Magister en Ciencias de la Información y las Comunicaciones, Candidato a doctor en Ingeniería de Sistemas y Computación en la Universidad Nacional de Colombia. Docente de la Universidad Distrital Francisco José de Caldas. Bogotá.
Fredy Hernán Martínez Sarmiento, Universidad Distrital Francisco José de Caldas
Ingeniero Eléctrico, especialista en Gestión de Proyectos de Ingeniería, candidato a doctor en Ingeniería de Sistemas y Computación de la Universidad Nacional de Colombia. Docente de la Universidad Distrital Francisco José de Caldas, Bogotá.

Referencias

Abbas, N.; Nasser, Y. y Ahmad, K. El. (2015). Recent Advances on Artificial Intelligence and Learning Techniques in Cognitive Radio Networks. EURASIP Journal on Wireless Communications and Networking, (1), 1–20. http://doi.org/10.1186/s13638-015-0381-7

Ahmed, A.; Boulahia, L.M. y Gaiti, D. (2014). Enabling Vertical Handover Decisions in Heterogeneous Wireless Networks: A State-of-the-Art and a Classification. IEEE Communications Surveys and Tutorials, 16(2), 776–811. Recuperado de: http://doi.org/10.1109/SURV.2013.082713.00141

Akyildiz, I.F.; Lee, W.Y.; Vuran, M.C. y Mohanty, S. (2006). NeXt Generation/Dynamic Spectrum Access/Cognitive Radio Wireless Networks: A Survey. Computer Networks, 50(13), 2127–2159. http://doi.org/10.1016/j.comnet.2006.05.001

Akyildiz, I.F.; Lee, W.Y.; Vuran, M.C. y Mohanty, S. (2008). A survey on spectrum management in cognitive radio networks. Communications Magazine, IEEE, 46(4), 40–48. http://doi.org/10.1109/MCOM.2008.4481339

Akyildiz, I.F.; Lee, W.Y. y Chowdhury, K.R. (2009). CRAHNs: Cognitive Radio Ad Hoc Networks. Ad Hoc Networks, 7(5), 810-836. http://doi.org/10.1016/j.adhoc.2009.01.001

Akyildiz, I.F. y Li, Y. (2006). OCRA: OFDM-Based Cognitive Radio Networks. Broadband and Wireless Networking Laboratory Technical Report.

Bkassiny, M.; Li, Y. y Jayaweera, S.K. (2013). A Survey on Machine-Learning Techniques in Cognitive Radios. IEEE Communications Surveys and Tutorials, 15(3), 1136–1159. http://doi.org/10.1109/SURV.2012.100412.00017

Bolstad, W.M. (2007). Introduction to Bayesian Statistics. Journal of Biopharmaceutical Statistics, 21(5), 971-887. Recuperado de: http://doi.org/10.1080/10543406.2011.589638

Börgers, T. y Dustmann, C. (2003). Awarding telecom licences: The recent European experience. Economic Policy, 36, 215-268. http://doi.org/10.1111/1468-0327.00106

Cabric, D.; Mishra, S.M. y Brodersen, R. W. (2004). Implementation Issues in Spectrum Sensing for Cognitive Radios. Conference Record of the Thirty-Eighth Asilomar Conference on Signals, Systems and Computers, 1(1), 772-776. http://doi.org/10.1109/ACSSC.2004.1399240

Cheng, X. y Jiang, M. (2011). Cognitive radio spectrum assignment based on artificial bee colony algorithm. 2011 IEEE 13th International Conference on Communication Technology, 161–164. http://doi.org/10.1109/ICCT.2011.6157854

Christian, I.; Moh, S.; Chung, I. y Lee, J. (2012). Spectrum Mobility in Cognitive Radio Networks. IEEE Communications Magazine, 50(6), 114-121. http://doi.org/10.1109/MCOM.2012.6211495

Cortés, J.A.Z.; Serna, M.D.A. y Jaimes, W.A. (2012). Applying fuzzy extended analytical hierarchy (FEAHP) for selecting logistics software. Ingeniería E Investigación, 32(1), 94–99.

Dadios, E.P. (2012). Fuzzy Logic: Algorithms, Techniques and Implementations. InTechOpen.

Dejonghe, A.; Van Wesemael, P.; Pavloski, M. y Chomu, K. (2011). Flexible and Spectrum Aware Radio Access through Measurements and Modelling in Cognitive Radio Systems. Technical report. FARAMIR.

Del Ser, J.; Matinmikko, M.; Gil, S. y Mustonen, M. (2010). A Novel Harmony Search Based Spectrum Allocation Technique for Cognitive Radio Networks. En: 2010 7th International Symposium on Wireless Communication Systems (pp. 233–237). http://doi.org/10.1109/ISWCS.2010.5624341

Etkin, R.; Parekh, A. y Tse, D. (2007). Spectrum sharing for unlicensed bands. IEEE Journal on Selected Areas in Communications, 25(3), 517-528. http://doi.org/10.1109/JSAC.2007.070402

Federal Communications Commission (2003). Facilitating opportunities for flexible, efficient, and reliable spectrum use employing cognitive radio technologies. Et Docket, 03(108), 5-57.

Ferber, J. (1999). An Introduction to Distributed Artificial Intelligence. Addison-Wesley.

Fraser, A.M. (2008). Hidden Markov models and dynamical systems. Filadelfia: SIAM.

Fudenberg, D. y Tirole, J. (1991). Game Theory. MIT Press. Recuperado de: https://books.google.com.co/books?id=pFPHKwXro3QC

Gallardo, J.R.; Pineda, U. y Stevens, E. (2009). Vikor Method for Vertical Handoff Decision in Beyond 3G Wireless Networks. En: 2009 6th International Conference on Electrical Engineering, Computing Science and Automatic Control, CCE 2009. http://doi.org/10.1109/ICEEE.2009.5393320

Gavrilovska, L.; Atanasovski, V.; Macaluso, I. y Dasilva, L.A. (2013). Learning and reasoning in cognitive radio networks. IEEE Communications Surveys and Tutorials, 15(4), 1761-1777. http://doi.org/10.1109/SURV.2013.030713.00113

Giupponi, L. y Pérez, A.I. (2008). Fuzzy-Based Spectrum Handoff in Cognitive Radio Networks. En: Proceedings of the 3rd International Conference on Cognitive Radio Oriented Wireless Networks and Communications, CrownCom 2008. http://doi.org/10.1109/CROWNCOM.2008.4562535

Goldberg, D.E. y Holland, J.H. (1988). Genetic Algorithms and Machine Learning. Machine Learning, 3(2), 95–99. Recuperado de: http://doi.org/10.1023/A:1022602019183

Han, J.; Kamber, M. y Pei, J. (2011). Data mining: concepts and techniques. Waltham, Massachusetts: Elsevier.

Haykin, S. (1998). Neural Networks: A Comprehensive Foundation. 2a. ed. Upper Saddle River, NJ: Prentice Hall PTR.

Haykin, S. (2005). Cognitive Radio: Brain-Empowered Wireless Communications. IEEE Journal on Selected Areas in Communications, 23(2), 201–220. http://doi.org/10.1109/JSAC.2004.839380

He, A.; Bae, K.K.; Newman, T.R.; Gaeddert, J.; Kim, K.; Menon, R. y Tranter, W. H. (2010). A survey of artificial intelligence for cognitive radios. IEEE Transactions on Vehicular Technology, 59(4), 1578–1592. http://doi.org/10.1109/TVT.2010.2043968

Hemández, C.; Pedraza, L.; Páez, I. y Rodríguez-Colina, E. (2015). Análisis de la Movilidad Espectral en Redes de Radio Cognitiva. Información Tecnológica, 26(6), 169-186.

Hernández, C.; Giral, D. y Páez, I. (2015a). Benchmarking of the Performance of Spectrum Mobility Models in Cognitive Radio Networks. International Journal of Applied Engineering Research (IJAER), 10(21), 42189-42197.

Hernández, C.; Giral, D. y Páez, I. (2015b). Hybrid Algorithm for Frequency Channel Selection in Wi-Fi Networks. World Academy of Science, Engineering and Technology, 9(12), 80-83.

Hernández, C.; Giral, D. y Santa, F. (2015). MCDM Spectrum Handover Models for Cognitive Wireless Networks. World Academy of Science, Engineering and Technology, 9(10), 679-682.

Hernández, C.; Páez, I. y Giral, D. (2015). Modelo AHP-VIKOR para hand off espectral en redes de radio cognitiva. Tecnura, 19(45), 29-39.

Hernández, C.; Salgado, C.; López, H. y Rodríguez-Colina, E. (2015). Multivariable algorithm for dynamic channel selection in cognitive radio networks. EURASIP Journal on Wireless Communications and Networking, 2015(1), 1-17. http://doi.org/10.1186/s13638-015-0445-8

Hernández, C.; Vásquez, H. y Páez, I. (2015). Proactive Spectrum Handoff Model with Time Series Prediction. International Journal of Applied Engineering Research (IJAER), 10(21), 42259–42264.

Hernández-Guillén, J.; Rodríguez-Colina, E.; Marcelín-Jiménez, R. y Chalke, M.P. (2012). CRUAM-MAC: A novel cognitive radio MAC protocol for dynamic spectrum access. En: 2012 IEEE Latin-America Conference on Communications, LATINCOM 2012 - Conference Proceedings. http://doi.org/10.1109/LATINCOM.2012.6505997

Hübner, R. (2007). Strategic supply chain management in process industries: An application to specialty chemicals production network design (Vol. 594). Berlín: Springer Science & Business Media.

Jayaweera, S. y Christodoulou, C. (2011). Radiobots: Architecture, Algorithms and Realtime Reconfigurable Antenna Designs for Autonomous, Self-Learning Future Cognitive Radios. Hershey, EE.UU.

Ji, Z.J.Z. y Liu, K.J.R. (2007). Cognitive Radios for Dynamic Spectrum Access - Dynamic Spectrum Sharing: A Game Theoretical Overview. IEEE Communications Magazine, 45(5), 88–94. http://doi.org/10.1109/MCOM.2007.358854

Jiang, C.; Chen, Y. y Liu, K.J.R. (2014). Multi-Channel Sensing and Access Game: Bayesian Social Learning with Negative Network Externality. IEEE Transactions on Wireless Communications, 13(4), 2176–2188. Recuperado de: http://doi.org/10.1109/TWC.2014.022014.131209

Kanodia, V.; Sabharwal, A. y Knightly, E. (2004). MOAR: A multi-channel opportunistic auto-rate media access protocol for ad hoc networks. En: Broadband Networks, 2004. BroadNets 2004. Proceedings. First International Conference on (pp. 600–610). IEEE.

Krishnamurthy, S.; Thoppian, M.; Venkatesan, S. y Prakash, R. (2005). Control Channel Based MAC-Layer Configuration, Routing and Situation Awareness for Cognitive Radio Networks. En: Proceedings - IEEE Military Communications Conference MILCOM (Vol. 2005). http://doi.org/10.1109/MILCOM.2005.1605725

Masonta, M.T.; Mzyece, M. y Ntlatlapa, N. (2013). Spectrum Decision in Cognitive Radio Networks: A Survey. IEEE Communications Surveys & Tutorials, 15(3), 1088–1107. Recuperado de: http://doi.org/10.1109/SURV.2012.111412.00160

Matinmikko, M.; Del Ser, J.; Rauma, T. y Mustonen, M. (2013). Fuzzy-Logic Based Framework for Spectrum Availability Assessment in Cognitive Radio Systems. IEEE Journal on Selected Areas in Communications, 31(11), 2173–2184. http://doi.org/10.1109/JSAC.2013.131117

Mir, U.; Esseghir, M. y Gaiti D., M.B.L. (2011). Dynamic spectrum sharing for cognitive radio networks using multiagent system. En: Consumer Communications and Networking Conference (CCNC), 2011 IEEE (pp. 658–663).

Mitola, J. y Maguire, G.Q. (1999). Cognitive Radio: Making Software Radios More Personal. IEEE Personal Communications, 6(4), 13-18. http://doi.org/10.1109/98.788210

Nisan, N.; Roughgarden, T.; Tardos, E. y Vazirani, V.V. (2007). Algorithmic game theory (Vol. 1). Nueva York: Cambridge University Press Cambridge.

Ormond, O.; Murphy, J. y Muntean, G.M. (2006). Utility-Based Intelligent Network Selection in Beyond 3G Systems. En: IEEE International Conference on Communications (Vol. 4, pp. 1831–1836). Recuperado de: http://doi.org/10.1109/ICC.2006.254986

Patil, S.K. y Kant, R. (2014). A Fuzzy AHP-TOPSIS Framework for Ranking the Solutions of Knowledge Management Adoption in Supply Chain to Overcome its Barriers. Expert Systems with Applications, 41(2), 679–693. http://doi.org/10.1016/j.eswa.2013.07.093

Petrova, M.; Mahonen, P. y Osuna, A. (2010). Multi-Class Classification of Analog and Digital Signals in Cognitive Radios Using Support Vector Machines. En: 2010 7th International Symposium on Wireless Communication Systems (pp. 986–990). Recuperado de: http://doi.org/10.1109/ISWCS.2010.5624500

Pham, C.; Tran, N.H.; Do, C.T.; Moon, S.I. y Hong, C.S. (2014). Spectrum Handoff Model Based on Hidden Markov Model in Cognitive Radio Networks. En: Information Networking (ICOIN), 2014 International Conference on (pp. 406–411). IEEE. doi: 10.1109/ICOIN.2014.6799714

Ramírez P., C. y Ramos R., V.M. (2010). Handover vertical: un problema de toma de decisión múltiple. En: VIII Congreso Internacional sobre Innovación y Desarrollo Tecnológico. Cuernavaca Morelos, México.

Ramírez, C. y Ramos R., V. (2013). On the Effectiveness of Multi-Criteria Decision Mechanisms for Vertical Handoff. En: 27th International Conference on Advanced Information Networking and Applications (AINA) (pp. 1157–1164). http://doi.org/10.1109/AINA.2013.114

Saaty, T.L. (1990). How to Make a Decision: The Analytic Hierarchy Process. European Journal of Operational Research, 48(1), 9–26. http://doi.org/10.1016/0377-2217(90)90057-I

Safavian, S.R. y Landgrebe, D. (1991). A Survey of Decision Tree Classifier Methodology. IEEE Transactions on Systems, Man and Cybernetics, 21(3), 660–674. Recuperado de: http://doi.org/10.1109/21.97458

Stevens, E.; Martínez, J.D. y Pineda, U. (2012). Evaluation of Vertical Handoff Decision Algorightms Based on MADM Methods for Heterogeneous Wireless Networks. Journal of Applied Research and Technology, 10(4), 534–548.

Stevens, E. y Wong, V.W.S. (2006). Comparison between vertical handoff decision algorithms for heterogeneous wireless networks. En: IEEE Vehicular Technology Conference (Vol. 2, pp. 947–951). http://doi.org/10.1109/VETECS.2004.1388970

Sutton, R.S. y Barto, A.G. (1998). Reinforcement Learning: An Introduction. IEEE Transactions on Neural Networks / a Publication of the IEEE Neural Networks Council, 9(5), 1054. http://doi.org/10.1109/TNN.1998.712192

Taj, M.I. y Akil, M. (2011). Cognitive Radio Spectrum Evolution Prediction using A rtificial Neural Networks based Multivariate Time Series Modelling. En: Wireless Conference 2011-Sustainable Wireless Technologies (European Wireless), 11th European (pp. 1–6). VDE.

Tanino, T.; Tanaka, T. y Inuiguchi, M. (2003). Multi-objective programming and goal programming: theory and applications (Vol. 21). Springer Science & Business Media.

Tragos, E.Z.; Zeadally, S.; Fragkiadakis, A.G. y Siris, V.A. (2013). Spectrum Assignment in Cognitive Radio Networks: A Comprehensive Survey. IEEE Communications Surveys and Tutorials, 15(3), 1108–1135. http://doi.org/10.1109/SURV.2012.121112.00047

Trigui, E.; Esseghir, M. y Merghem, L. (2012). Multi-agent systems negotiation approach for handoff in mobile cognitive radio networks. En: 2012 5th International Conference on New Technologies, Mobility and Security - Proceedings of NTMS 2012 Conference and Workshops. http://doi.org/10.1109/NTMS.2012.6208687

Valenta, V.; Maršálek, R.; Baudoin, G.; Villegas, M.; Suarez, M. y Robert, F. (2010). Survey on Spectrum Utilization in Europe: Measurements, Analyses and Observations. Fifth International Conference on Cognitive Radio Oriented Wireless Networks & Communications (CROWNCOM), 2010 (230126), 1–5. http://doi.org/10.4108/ICST.CROWNCOM2010.9220

Wei, Y.W.Y.; Li, X.L.X.; Song, M.S.M. y Song, J.S.J. (2008). Cooperation Radio Resource Management and Adaptive Vertical Handover in Heterogeneous Wireless Networks. 2008 Fourth International Conference on Natural Computation, 5, 197–201. Recuperaado de: http://doi.org/10.1109/ICNC.2008.504

Woods, W.A. (1986). Important Issues in Knowledge Representation. Proceedings of the IEEE, 74(10), 1322–1334.

Wooldridge, M. (2009). An introduction to multiagent systems. Glasgow, Gran Bretaña: John Wiley & Sons.

Working, S.E. (2015). Federal Communications Commission Spectrum Policy Task Force. Recuperado de: https://transition.fcc.gov/sptf/files/SEWGFinalReport_1.pdf

Xu, G.X.G. y Lu, Y.L.Y. (2006). Channel and Modulation Selection Based on Support Vector Machines for Cognitive Radio. En: 2006 International Conference on Wireless Communications, Networking and Mobile Computing (pp. 4–7). Recuperado de: http://doi.org/10.1109/WiCOM.2006.181

Yifei, W.; Yinglei, T.; Li, W.; Mei, S. y Xiaojun, W. (2013). QoS Provisioning Energy Saving Dynamic Access Policy for Overlay Cognitive Radio Networks with Hidden Markov Channels. China Communications, 10(12), 92–101. Recuperado de: http://doi.org/10.1109/CC.2013.6723882

Yonghui, C. (2010). Study of the bayesian networks. En: E-Health Networking, Digital Ecosystems and Technologies (EDT), 2010 International Conference on (Vol. 1, pp. 172–174). IEEE. doi: 10.1109/EDT.2010.5496612

Zhao, Y.; Mao, S.; Neel, J.O. y Reed, J.H. (2009). Performance Evaluation of Cognitive Radios: Metrics, Utility Functions, and Methodology. Proceedings of the IEEE, 97(4), 642–658. http://doi.org/10.1109/JPROC.2009.2013017

Zheng, H. y Cao, L. (2005). Device-Centric Spectrum Management. En: 2005 1st IEEE International Symposium on New Frontiers in Dynamic Spectrum Access Networks, DySPAN 2005 (pp. 56–65). http://doi.org/10.1109/DYSPAN.2005.1542617

Cómo citar
Hernández, C., Pedraza Martínez, L., & Martínez Sarmiento, F. (2016). Algoritmos para asignación de espectro en redes de radio cognitiva. Tecnura, 20(48), 69-88. https://doi.org/10.14483/udistrital.jour.tecnura.2016.2.a05
Publicado: 2016-04-01
Sección
Investigación

Artículos más leídos del mismo autor/a

<< < 1 2 3 4 5 > >>