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ABSTRACT

The Davis and Putnam (D&P) scheme has
been intensively studied during this last decade.
Nowadays, its good empirical performances are
well-known. Here, we deal with its theoretical
side which has been relatively less studied until
now. Thus, we propose a D&P algorithm which
is linear for Horn-SAT and quadratic for 2-SAT.
As a consequence, the D&P algorithm designed
to deal with the general SAT problem runs almost
as fast (in terms of complexity) as the specialised
algorithms designed to work exclusively with a
specific tractable SAT subclass. The algorithm
has been also implemented and it is proven that
it outperforms some good well-known solvers for
several polynomial SAT instances.

1. Introduction

RESUMEN

El esquema de Davis y de Putnam (D&P) se ha
estudiado intensivamente durante esta tiltima década.
Hoy en dia, sus buenos resultados empiricos son
conocidos. Este articulo se ocupara especialmente
de su componente tedrico, el cual se ha estudiado
relativamente menos hasta este momento. Se propone
un algoritmo de D&P que sea lineal para Horn-SAT y
cuadrético para 2-SAT; en consecuencia, el algoritmo
de D&P disefiado de acuerdo con el problema general
SAT corre casi tan rapido (en términos de complejidad)
como los algoritmos especializados, disefiados para
trabajar exclusivamente con una subclase SAT
especifica. El algoritmo se ha puesto en ejecucién
y se ha comparado con solvers muy conocidos para
varias subclases de instancias SAT.

Since the beginning of the current decade (Buro & Buning, 1993) (Dubois et
al,1993), the widely well known scheme of Davis and Putnam (D&P) (Davis &
Putnam, 1960), whose most appropriate algorithmic description was given in (Davis,
Logemann, 1962), has proved to be faster than many other elaborated schemes.



Throughout this decade, algorithms with the D&P’s
scheme were empirically compared to other competitive
algorithms with success. Thus, this scheme was extensi-
vely used for analysing the transition phase phenomenom
(Crawford & Auton, 1993) that emerges when solving
SAT instances randomly generated. Moreover, during
these last years the D&P’s mechanism has been essential
in the study of heuristics (Li & Ambulagan, 1997; Ho-
oker & Vinay, 1995) (Jeroslow & Wang, 1990) for pro-
positional theorem proving. Furthermore, finding high
performance algorithms for some real-life applications,
e.g. (Kautz & Selman, 1992), has relied on the famous
algorithmic scheme as well.

‘We may also find several proposals (Crawford & Au-
ton, 1993; Zhang & Stickel, 1994; Rauzy, 1995; Zhang &
Stickel, 1996; Zhang, 1997) of different implementations
of algorithms stemming from the D&P principle. These
implementations based on suitable data structure may
enable us to scan fastly the search space.

In this article, we propose a data structure for the
D&P’s scheme and a new inference rule which allow us
to claim that the Davis and Putnam method is strictly linear
for the Horn-Sat and 2-SAT sub-classes. Thus, we push
beyond the currently known efficiency of the Davis and
Putnam method, since only quadratic and even exponen-
tial complexities had been obtained for such subclasses
(Dechter & Rish, 1994; Rauzy, 1995) until now.

In order to prove the effectivity in time of the new
solver, we’ve selected the algorithms Satz and Sato using
instances taken from' the tests were made under linux
system in a IV pentium computer in classical C.

Therefore, our goal in this article is three-fold and it
concerns the efficiency of the D&P principle:

(1) To propose data structures which may enable to
traverse rapidly the search space.

(2) To introduce two new inference rules, called po-
larized formula and cut formula, that prune large
search spaces.

(3) To prove that D&P is almost as fast (in terms of com-
plexity) as the specialized algorithms designed to
deal only with a specific tractable class (e.g. Horn,
2-Sat) of instances.

(4) To show by practical experiments that the proposed
D&P algorithm is faster than well-known SAT sol-
vers running on tractable instances.

The proposed data structures are not complex ones

L http://www.satlive.org/SATCompetition
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and they are indeed based on classical data structures
such as flags, counters, pointers and lists.

The organization of the article is as follows. The next
section presents the classical notions of the SAT problem
and those of the D&P scheme. Afterwards, in section 3, an
informal description of the proposed algorithm is given.
Section 4 specifies the first D&P procedure. After, the
changes in the algorithm, in order to select unit clauses
first, are described. In section 6, two new inference rules for
the D&P method are defined. In section 7, some worst-case
complexity of the D&P scheme is briefly treated. In the
section 8, the experimental results are presented. Finally, it is
claimed that the algorithm stemmed from the D&P scheme
is linear for several well-known tractable classes.

2. Preliminaries

Let us recall the bases and the classical terminology
associated with the SAT problem and the D&P algori-
thmic principle.

* Basic Terminology. The number of different propositions
is assumed to be n. A positive literal L is a proposition
p and a negative literal is a complemented proposition
—p. The complemented literal of L is noted —L.. A clause,
noted C, is a set of literals which may be empty. A for-
mula, noted I', is a set of clauses which may be empty.

 Satisfiability. An interpretation I assigns to each literal
avalue in {0, 1} and verifies I(p) = 1 - I(-p). An inter-
pretation satisfies a clause iff it assigns 1 to at least one
of its literals. An interpretation satisfies a formula iff
it satisfies all of its clauses and in this case, the inter-
pretation is called a model. A formula is satisfiable iff
there exists at least one interpretation that satisfies it.

* Partial interpretation. An interpretation that maps only 0
<k < n propositions satisfies a certain sub-set of clauses
of a formula. If the partial interpretation satisfies all the
clauses is called a partial model. All the interpretations
covering this partial model are also models. If a partial
interpretation unsatisfies all the literals of at least one
clause then all the interpretations covering this partial
interpretation unsatisfy the formula in question too.

* D&P Scheme. Each state of the D&P algorithm is as-
sociated with a set of k < n literals. A set can include
either aliteral or its complement but not both. Each set is
associated with the Current Partial Interpretation (CPI)
that satisfies each literal into the set. A straightforward
version of the D&P solver is depicted here below. The
procedure (Inference I" p) returns a new formula ob-
tained from the original one by removing from it the
clauses containing p and the occurrences of neg p.



2.1 Algorithm 1: D&P scheme. The function pick
literal selects a literal L from the formula T that is
not in CPI.

D&P (I, CPI)

1.If " = {} then HALT (sat)

2.If {} e T then Return (unsat)

3. L « pick.literal

4. D&P ((Inference I" p), CPI U {p})

5. Return (D&P((Inference I' —p ), CPI CPI U{-p}

2.2 Theorem 1. D&P is correct: D&P(T,{}) returns
sat iff T is satisfiable.

* Remark. The rules of clause subsumption and pure literal
elimination are not considered. Both rules involve a high
computational cost and are rarely useful in practice.

* D&P algorithm. We will distinguish between a D&P
algorithm and the D&P scheme as follows. The D&P
scheme description above omits the data structure
employed to represent I, CPI and also the specific
instructions in pseudo-code. Thus, a D&P scheme
where the data structure and its computer instructions
are completely specified is called a D&P algorithm.

* Remark. The following two statements are equivalent:

(1) The complexity of the D&P scheme is in
O(f(n)) and,

(2) The best complexity of a D&P algorithm is in
O(f(n)).

Thus, in the sequel we use statements of type (1).

As mentioned, each state of the search space can be
associated with the current partial interpretation CPI.
This is formed with the literals which are added incre-
mentally in each recursive call.

The basic data structure consists of:

(1) For each literal L: 1) clauses(L) is the set of clauses
including L and, 2) new.sat.clauses(L) is the subset
of clauses(L) not satisfied by the CPI. 3) CPI(L) is
Yes if L is in the CPI.

(2) For each clause C: 1) state(C) = sat iff C is satisfied by
the CPI and, 2) NegCounter (C) (resp. PosCounter(C))
indicates the number of negative (resp. positive) lite-
rals not satisfied by the CPL

(3) For the formula I': NegCounter (I') (resp. PosCoun-
ter(I')) indicates how many current negative (resp.
positive) clauses are unsatisfied by the CPL.

3. Informal description of the algorithm

Bearing in mind both the first general description of
the D&P scheme and the described data structure, we can
informally describe our specific algorithm as follows:

e Steps 1, 2 and 3. They are straightforwardly imple-
mented.

Step 4. The function (Inference I'p) is accomplished
in two steps 4.A and 4.B. These steps are related
respectively to the unit-subsumption and to the unit-
resolution inferences.

e Step 4.A: Unit-subsumption. After a literal L is picked
up in step 3, all the clauses C unsatisfied by the CPI
but containing L are marked satisfied, namely state(C)
= sat. The counter of I is decremented as many times
as new clauses are satisfied. Whenever this counter is
set to zero it means that all the clauses are satisfied and
thus, the algorithm halts sending “Sat”.

e Step 4.B: Unit-resolution. When counter (I') # 0 the
process is continued by decrementing the counters
corresponding to clauses having occurrences of —L.
If no counter is set to zero then, another proposition
is selected and the steps (1) - (4) are iterated (this
is done calling recursively the main function D&P).
If one of them is set to zero the CPI unsatisfies the
formula and hence the algorithm stops the search be-
yond the CPI and backtracks. This implies that the
operations done in the last step 4 must be undone.
Thus, for each Ce sat.new.clauses, State(C) is set
again to unsat and counter (I') is incremented, and
finally sat.new.clauses is set to . These operations
are incrementally continued till returning to the last
pending recursive call corresponding to a step 5.

Step 5. The process follows the search for models con-
taining CPI U {=L}. The operations in step 5 are equal
to those of step 4 as long as L is exchanged by —1L.

4. A basic algorithm issued from the D&P
scheme

First, we present the four procedures which form the
skeleton of our proposed algorithm. Unit-subsumption
(resp.Unit-Resolution) is implemented by the procedu-
re called Remove-clauses (resp.Remove-literals) and
in the backtracking process its steps are undone by the
procedure Restore-clauses (resp.Restore-literals). This
first algorithmic version intends to help the reader to
understand the more elaborate and definitive complete
algorithm which will be given later.
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e Procedure 1. Remove.clauses(L). It removes from I
the clauses satisfied by L by decrementing the counter
(I'), once per each clause not satisfied by the current
CPI and satisfied by L. If this counter is set to zero,
the procedure halts the whole satisfiability test process
and it returns “‘sat”.

Remove.clauses(L)

1. new.sat.clauses (L) < @

2. VC e Clauses(L) s.t.state(C)= unsat do:
¢ Add C to new.sat.clauses(L)
e state(C) < sat
¢ Decrement counter (I")

3. End

* Procedure 2. Restore.clauses(L). It undoes the
operations carried out by the procedure Remove.
Clauses(L).

Restore.clauses(L)

1. VC € new.sat.clauses(L) do:
¢ state(C) < unsat
¢ Increment counter (I")
e Decrement counter (I")
e new.sat.clauses(L) « @
2. End

Procedure 3. Remove.Literals(L). It removes all
the occurrences of L. If at least one clause becomes
empty then the CPI unsatisfies all the literals in such
clause and thus, the boolean flag UNSAT is set to
True. Otherwise, the procedure ends with the flag
UNSAT=False.

Remove.literals(L)

1. UNSAT <« False
2. VC € Clauses(L) do:

¢ Decrement Counter(C)

e If Counter(C) = 0 then UNSAT <« True
3. End

* Procedure 4. Restore.literals(L). It undoes
the operations performed in the procedure
Remove.literals(L).
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Restore.literals(L)

1. VC € Clauses (L) do:

o state(C) <« unsat

¢ Increment Counter (C)
2. End

Now using these procedures we can construct our
first D&P algorithm.

e Algorithm 2. Preliminary D&P algorithm.
Pick literal selects a literal from the current I', namely
the formula that results after applying consecutively
(Inference I'L), for each literal L in CPI. In other
words, it selects a literal such that CPI(L) = CPI(-L)
= Not. Its definition is straightforward and therefore,
it will be omitted. Similarly, the initialisation of the
data structure is not given here.

D&P

. L < pick-Literal

. Remove.clauses (L), Remove.literals(—L)
. If UNSAT = False then D&P

. Restore.clauses (L), Restore.literals (—L)

. Remove.clauses (-L), Remove.literals (L)
. If UNSAT=False then D&P

. Restore.clauses (L), Restore.literals (L)

. Return (unsat)

End

O 00U AW —

Remark. Notice that this algorithm is exactly the
same as the previous one: the function (Inference p)
is materialised by both procedures Remove.clauses and
Remove.literals.

¢ Theorem 2. D&P’s correctness. D&P returns unsat
iff I is unsatisfiable.

The proof is straightforward from the definition of
the procedures 1 to 4 and theorem 1.

The last version of the D&P procedure can be sim-
plified integrating the operations in Remove-clauses
(L) and Remove-literals(—L) in one procedure that we
shall call Inference(L) and use from now on. Similarly,
Restore-clauses and Restore-literals are merged in Undo-
Inference(L). We can modify slightly Remove-literals in
a way that it retuns unsat instead of using the previous
flag UNSAT. Thus, we have:



Remove.literals(L)

1. UNSAT « False
2. VC € Clauses(L) do:

¢ Decrement Counter(C)

e If Counter(C)=0 then UNSAT . True
3. If UNSAT return(unsat) else return(sat)
4. End

D&P

. L « pick-Literal

. If Inference(L) # unsat do: D&P

. Undo-Inference(L)

. If Inference(— L) # unsat do: D&P
. Undo-Inference(— L)

. Return (unsat)

End

N AW

5. Selecting unit clauses

As itis well known, the rapidity of the D&P scheme
increases if one chooses literals from unitary clauses(L)
in step 3. The intuitive reason is that the subsequent
search with the CPI branch corresponding to the com-
plemented literal CPI U {—=L} is trivially unsatisfiable
and therefore it is not executed.

The basic idea is to take a literal from a unit clause
and remove all of its complemented occurrences from
the formula. These literal removals could give rise to new
unit clauses. A direct generalization of this principle is as
follows: Repeat unit clause selection and its subsequent
removals of its complemented literals and end when no
new unit clauses are generated; if an empty clause is
produced indicate unsatisfiability.

Efficient implementations of this strategy, called unit
propagation can be found in (Dowling & Gallier, 1984;
Crawford & Auton, 1993). In (Zhang & Stickel, 1994,
1996) a somewhat different principle is suggested which
is claimed to improve the one proposed in (Dowling &
Gallier, 1984; Crawford & Auton, 1993).

In order to embed properly the Unit-propagation pro-
cedure in our D&P, we add two data structures: CPI(L)
whose function is CPI(L) = Yes iff Le CPI and a list called
Computed.units, containing the list of emerged literals in
unit clauses throughout the Unit.propagation process.

* Procedure S. Unit-propagation. Computed.units is
a local variable mean while unit is a set of literals

initialized in the initialization procedure (once at
the begining) and in D&P (in each recursive call
of D&P). Inference(L.) (resp. Undo-Inference (L))
includes the instruction: CPI(L) <« Yes (resp. and
CPI(L) « Not).

Unit-propagation

1. FLAG « Sat
2. ComputedUnits <— Nil
3. while ((Unit ) # Nil and flag = Sat)
3.1. L < Pop(unit)
3.2. Unit(L)=0
3.3. FLAG <«Inference(L)
3.4. Add L to ComputedUnits
4. If flag # sat
4.1 VLI’ € ComputedUnits
e UndolInference(L)
4.2 Return (unsat)
5. Else return (ComputedUnit)

* Theorem 3. Literal Soundness. If L is pushed into
unit then T [= L.

* Theorem 4. Soundness. If Unit-propagation returns
unsat then I is unsatisfiable.

* Theorem 5. Literal completeness. I" |=L iff Lis
pushed in unit.

* Theorem 6. Completeness. If I" is a Horn unsatis-
fiable instance then Unit.propagation returns Unsat.

* Theorem 7. Correctness. Iff I is a Horn instance then
Unit.propagation returns Unsat if I is unsatisfiable.

* Theorem 8. Linear Complexity. Unit.propagation
ends in O(size(I")) time.

Next, we detail the D&P algorithm improved with
the unit-propagation strategy.

e Algorithm 3. D&P algorithm. Computed.units is a
local variable. The procedure Inference(L) (resp. Undo-
Inference) set CPI(L) to Yes, push L into unit and call
successively Remove.Clauses (L) and Remove.Literals
(—L) (resp. undo all these operations).

Inference
1. CPI(L) < Yes
2. RemoveClauses(L)

3.return RemoveLiterals(— L)
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Undo-Inference(L)

1. CPI(L) <~ Not

2. Restore-clauses(L)
3. Restore-literals(— L)

Procedure main

1. D&P
2. L « PickLiteral
3. If Inferencia (L) # unsat
3.1. ComputedUnits <— UnitPropagation
3.2 if (ComputedUnits # unsat) then: D&P( )
* VL’ € ComputedUnits do:
- Undolnferencia(L’)
4. Undolnferencia(L)
5. If Inferencia(— L)= unsat
5.1 ComputedUnits <— UnitPropagation
5.2 If (ComputedUnits # unsat) then D&P( )
* VL’ e ComputedUnits do:
- Undolnferencia(L’)
6. Undolnferencia(— L)
7. Return (unsat)

Itis well known that the integration of Unit.propagation
procedure in the D&P scheme is capital to get a good
complexity for Horn instances. This will be dealt with in
the last section.

e Theorem 9. The D&P algorithm above returns unsat
iff I is unsatisfiable.

The proof follows from the theorem 2 (previous
D&P correctness), the theorems 3 to 6 (Unit-pro-
pagation correctness) and the description of the
algorithm above.

6. Two new inference rules

6.1. Detection of polarised formulas

In this section, we introduce some notions to speed up
the satisfiability test with a new inference rule.

Definition 6.1 Polarised formulas. We say that
a formula has positive (resp. negative) polarity if
each clause has at least one positive (negative) lite-
ral. Formulae with polarity will be called polarised
formulae.
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Corollary 6.1 Polarised satisfiability. A polarised
formula is trivially satisfiable.

Indeed, a model is obtained by assigning O (resp.
1) to each propositional variable of a negative (resp.
positive) polarised formula. Thus, in front of a polari-
sed formula, we can save a large deal of running time
by avoiding subsequent splitting rules till non-empty
satisfied clauses are obtained. Next, we propose some
data structure and algorithmic operations to detect
polarised formulae. We prove that this detection is per-
formed in constant time O(1) and hence a significant
improvement is achieved in testing the satisfiability
of formulae.

The previous counter counter(C) of literals of a clause
C is substituted by two counters. Similarly for the formu-
la, counter(I") is now separated into two counters. Thus,
we have the following data structure:

» Foreach clause C: pos.counter(C) (resp. neg.counter(C))
indicates the number of positive (resp. negative) literals
in C not satisfied by the CPL.

¢ For the formula I': neg:counter(I") and pos:counter(I")
indicate respectively the number of positive and ne-
gative clauses unsatisfied by the CPIL.

The updated Remove.clauses (L) and Remove.literals
(L) are:

e Procedure 6. Remove.clauses(L). It removes from I"
the clauses not satisfied by the current CPI and satisfied
by L by setting: state(C) <— sat. Also, the counter of
negative (resp. positive) clauses in I' is decremented
if C contains only negative (resp. positive) literals.

Procedure RemoveClauses

1. NewSatClauses(L) < Nil
2. VC € Clauses (L) do:
2.1. If state (C) = unsat
e Add C to NewSatClauses(L)
e State(C) « sat
e If NegCounter(C) = 0 do: Decrement
PosCounter(I")
e If PosCounter(C) = 0 do: Decrement
NegCounter(I")
3. End

* Procedure 7. Restore.clauses(L). It undoes
the operations carried out by the procedure
Remove.clauses(L).



Procedure RestoreClauses

1. VC € NewSatClauses(L) do:
1.1. state (C) < unsat
i. If NegCounter(C) = 0 do: Increment
PosCounter(I')
ii. If PosCounter(C) = 0 do: Increment
NegCounter(I")
2. End

Remove Literals(L)

* Procedure 8. Remove.Literals(L). It removes all
the occurrences of L. If at least one clause becomes
empty then the CPI unsatisfies all the literals in such
clause and thus, the boolean flag UNSAT is set to
True and the procedure returns unsat (steps 2.2, 2.3
and 2.4). Otherwise, the procedure ends with the flag
UNSAT=False and the procedure returns sat, step 2.6.
Instep 2.1.1 and 2.1.2 counters of C and G are upda-
ted appropriately. Step 2.3 detects the unit clauses to
be processed in the next procedure Unit-Propagation.
Step 2.5 is related to the polarized formula detection
that will be presented in the next section. We have
introduced explanatory comments in each step.

1. UNSAT <« false
2. VC e Clauses(L) do:
2.1. If state (C) = unsat

/*If the clause is unsatisfied, the following cases are considered:

2.1.1.If L=pdo:

e If PosCounter(C) = 1 and If NegCounter(C) > 0 do:
/*1f there is only one positive literal in C, update the counters of G and that of C.

- increment NegCounter(I")
e Decrement PosCounter(C)
212IfL==-p

e If NegCounter(C) = 1 and If PosCounter(C) > 0 do:
/*Similar steps when there is one negative literal

- increment PosCounter (I")

* Decrement NegCounter (C)
2.2. If PosCounter(C) = 0 and NegCounter(C) = 0 do:
/*If both counters are set to 0, then the empty clause is detected

* flag < true

2.3. If PosCounter(C) + NegCounter(C) = 1 do:
/*If there is only one literal in C, a unit clause has been detected
e Search’ € C, CPI(L) = CPI(L) = Not
/*we search for the literal in C
- If (Unit (L) = 0) then do:
/*If the literal is not in Unit, it is added to Unit
* If (Unit (-L") = 1) then flag < true
/*If both L’ and — L. are in Unit, the empty clause is detected
otherwise L is added to the stack of unit clauses

* else do:
+ push (L’,Unit)
« Unit (L")=1

2.4 if (UNSAT=true) then return(unsat)
/*If the empty clause has been detected the procedure returns unsat

2.5 if ((NegCounter(I")=0 or PosCounter (G )=0) Halt (sat)
/*We implement the polarity rule: If one of the counters is O the formula
is satisfiable (to be explained in the next section)

2.6 Else return(sat)
3. End
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* Procedure 9. Restore.literals (L). It undoes the opera-
tions performed in the procedure Remove.literals (L).

1. NewSatClauses(L) <« Nill
2. VC € Clauses(L)
2.1. If state (C) = unsat
¢ Add C to NewSatClausues(L)
e State (C) = sat
* If NegCounter (C) =0
- Decrement PosCounter(I")
e If PosCounter (C) =0
- Decrement NegCounter(G )
3. End

* Algorithm 4. The definitive D&P algorithm is as the
previous one defined in section 6.1, simply substi-
tuting the functions in section 4 by those described
here above.

e Theorem 10. D&P correctness. The algorithm 4
returns unsat iff I is unsatisfiable.

6.2 Detection of cut formulas

* Definition 6.2 A clause reduced by the CPI is a original
clause from which some literals has been removed.

Definition 6.3 A cut sub-formula A is a subset of the
original formula I". In other words, A is composed by
some clause non-reduced of I'. We can say that the
initial I" is cut in two subformulae I'-A and A.

Theorem 11. Let us A be a sub-formula obtained
from I" after removing clauses and occurrences co-
rresponding to the CPL. If " is cut in I'- A and A then
I" is satisfiable iff A is satisfiable.

This theorem allows us to reduce the search space by
avoiding to expand the pending nodes in I'-A.

e Data Structure. Reduced(C) is yes if some occu-
rrences of C has been removed, in other words, C
has been reduced.CounterCut(I") counts the number
of reduced clauses in I". When this counter becomes
0 we can ignore the pending expansions developed
until that moment, because the initial I" has been cut
in I'-A and A.

e Algorithm. In Remove.Literals the clauses with
state(C)= unsat are reduced, namely Reduced(C) <
Yes, and the counter CounterReduced(I") is incremented.
These two operations are included in step 2.1. Each time
areduced clause is satisfied in RemoveClauses then the
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counter is decremented. When CounterReduced(T") is set
to O then the current I is a subset of the initial I". In such
situation we can skip the pending explorations until that
moment and call D&P for that purpose. These operations
are carried out at the end of RemoveClauses.

 Theorem 12. The algorithm including the previous modi-
fication returns “unsat’ iff the formula is unsatisfiable.

e Theorem 13. 2-SAT Instances. D&P is quadratic for
2-SAT instances.

The proof of this theorem is based on the linearity
of the Unit-propagation and on the linearity of detection
of cut formulae.

7. Some worst-case complexity of the D&P
scheme

Henceforth, we shall write “D&P” instead of “the de-
finitive D&P algorithm 4”. The polarised rule inference is
capital to perform the following complexity behaviors.

e Theorem 14. Horn Instances. D&P is strictly linear
for Horn instances.

Proof sketch. The following facts are at the nucleus
of the theorem proof:

(1) When a literal L is selected then Unit.propagation
(L) is executed.

(2) Unit.propagation(L) ends when no unit resolution
is applicable.

(3) Unit.propagation(L) stops after having removed some
binary clauses.

(4) The original formula is satisfiable iff the remaining
set of binary clauses is satisfiable.

(5) There is at most one backtracking point correspon-
ding to the branch —L.

(6) The total running time is at most proportional to
2.size(I).

8. Empirical results

The proposed algorithm that we call D&PHorn2Sat
has been implemented in language C and empirical tests
have been obtained for the following formulae: 1) Ran-
dom Polarized; 2) Structured Horn, and 3) Structured
and Random 2-CNF.

2 To look at htpp://www.satlive.org/SATCompetition

3 www.satlib.org



 Test Algorithm: In order to measure the behavior
of the new algorithm, we have taken as references
the solvers SATZ 4.1 (Li &Ambulagan, 1997) and
SATO 3.0 (Zhan, 1997). These algorithms were
selected due to their features: they are complete
systematic algorithms and present excellent results
in different competitionsz. Additionally, the source
codes of SATO and SATZ are available* which makes
possible to compile them in the same machine.

Polarized Formulae. Using the SATO software envi-
ronment, 10 groups of polarized formulae were created
each of them containing 10 different instances. The
sizes of the groups are established fixing the number
of literals at 200 and varying the number of clauses
from 650 to 1100 and incrementing in each step the
number of clauses by 50.

Each instance has been executed 1000 times, and we
have taken the aver age time for each sample. Figures 1
and 2 show the behavior for polarized formulae of respecti-
vely the algorithms Sato and D&PHorn2Sat, and Satz and
D&PHorn2Sat. The graphics in the axis of Y represents
the CPU time and in the abscissas axis the size of the
formulae (number of literal occurrences).

We see in these figures that D&PHorn2Sat has a
linear behavior while SATO and SATZ do not. In the
first figure, D&PHorn2Sat goes along the X axis, its
execution time, almost zero, is negligible with respect to
that of SATO. Besides SATO falls down in the transition
phase phenomenon. This is due to the fact that SATO
looks for deeply in the search tree. SATZ although seem
not be linear presents moderated execution times for
polarized formulae.

* Horn Formulae. With regard to Horn formulae, they
were generated by the following equation:

Hn,k _ {_‘pn+1,1 }{{BH,I ’ﬂB,k 7"'7_'1)[,1} ‘n<is< 1}’ (1)
{p,.—P, fk<j<2n<i<i}{p,}

The sizes of these Horn formulae are determined
by n and k. In our experiments, these take values bet-
ween n =k =90 and n = k = 99. With n > 100 and k
> 100, SATO does not solve the instances, since the
atom of greater value that it can work with is 25000
and the generated by (1) with such values of nand k,
surpasses the mentioned rank. SATZ solves formulae
for n < 200 and k < 200. The results of the tests are
in Figures 3 and 4.

The three solvers seem linear but the gains in time
performed by D&PHorn2Sat with respect to SATO and
SATZ are very significant.
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Figure 1. Behavior of SATO and DPHorn2Sat for polarized
formulae
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Figure 2. Behavior of SATZ and DPHorn2Sat for polarized
formulae
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Figure 3. Times for SATO and DPHorn2Sat with Horn formulae
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* 2-CNF formulae. The formulae 2-CNF hand-made
were created with the following structure:

H,, = (_‘Pn+1,1 )7(P1,0) {(Pm ’_'Pi,()):l i< ”}(Pn a_‘Pym,o)
{F...p, )1<i<n2<j<k}{E,.—P,)1<i<n2<j<k}

Instances 2-CNF hand-made were considered from n
=k=90ton=k=99, increasing them in each step by 1.
Each formula was executed 1000 times and the average
time of such execution was sampled.

Figure 5 shows that in this case the algorithm SATO
presents the best behavior, then DPHorn2Sat and finally,
SATZ has the worst performance.

Random 2-CNF instances were generated using the
software environment of the solver SATO 4.1, using its
generator of formulae. For this experiment we fixed the
clause/variable ratio at 4.2 (this value is appropriate for
our experiments but it is not related to the transition
phase phenomenon) and varied the number of literals
from 1550 to 2250 and the number of clauses from
6200 to 9000. Then, each point in the graphic was taken
incrementing by 50 the number of literals and by 50%4.2
the number of clauses.

In the results shown graphically in Figure 6, we
observe that for this type of formulae the best performance
is presented by SATO. SATZ and DPHorn2Sat require
similar execution times.

9. Conclusion

In this article, we have studied deeply the D&P scheme in
order to design an efficient algorithm for the well-known
polynomial classes of formulae: Horn and 2-Sat. Our
main results have been: (1) to design an appropriate non-
complex data structure to perform efficiently the inferen-
ces; (2) to furnish two new sound inference rules called
Polarized Formula and Cut Formula; (3) to demonstrate
that an algorithm stemmed from the D&P scheme can
run, on certain tractable instances of high interest in
practical applications, almost as fast as the published
algorithms specially designed for dealing with only such
tractable classes. Thus, we enhance the theoretical virtues
of the D&P method for propositional theorem proving.
(4) to show with experimental results that the proposed
algorithm performs better than two well-known solvers
with respect to several polynomial classes.
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