Control Directo al Par y Control de Campo Orientado para un Motor Síncrono de Imanes Permanentes

Direct Torque Control and Field Oriented Control for Permanent Magnet Synchronous Motor

Abstract (es_ES)

Contexto: Los motores síncronos de imanes permanentes o Permanent Magnet Synchronous Motor (PMSM, por sus siglas en inglés) han mejorado rápidamente su rendimiento en cuanto a la densidad de potencia, eficiencia y mejor dinámica, gracias a los procesos de tecnologías empleadas en ellos tales como: la técnica de control y la tecnología de circuitos de accionamiento. Un PMSM puede operar tanto como motor y como generador, además se destacan por tener un reducido mantenimiento, ya que a diferencia de otro tipo de motores los PMSM no presentan anillos colectores ni escobillas. El algoritmo de control que se emplea generalmente en este tipo de motores es un control vectorial, divido en Control Directo del Par (DTC) y Control de Campo Orientado (FOC).

Metodología: La plataforma computacional donde se realizan las simulaciones es en el software Matlab (R2017a) Simulink 8.9, donde se utilizan bloques predeterminados y funciones programas para los diagramas de control vectorial DTC y FOC.

Resultados: En cuanto al control del par electromagnético, FOC presenta mayor rizado que el DTC, por lo que se determina que el DTC tiene mayor control de par en relación al FOC. Para el control del flujo magnético, de acuerdo con los valores obtenidos, el DTC tiene un mejor control que el FOC. Para el control de velocidad, tanto el control DTC como FOC tienen una rápida respuesta ante perturbaciones, sin embargo el DTC tiene un tiempo de respuesta menor cuando el PMSM se pone en movimiento desde el reposo, es decir que el DTC tiene una respuesta rápida en el estado transitorio y una vez que el motor se encuentra en movimiento, ante perturbaciones como la disminución de velocidad el FOC tiene mejor control.

Conclusiones: Al analizar los aspectos más importantes para determinar cuál técnica de control es efectiva, se concluye que la técnica de control DTC tiene mayor efectividad de acuerdo con la técnica de control FOC, sin embargo, cabe mencionar que las dos técnicas de control son ampliamente utilizadas en el sector industrial en el accionamiento de motores eléctricos por lo que la selección de dichas técnicas dependerá del proceso a realizar.

Abstract (en_US)

Context: The permanent magnet synchronous motors (PMSM) have rapidly improved their performance in terms of power density, efficiency, and better dynamics, thanks to the technologies used in them, such as: the control technique and the drive circuit technology. A PMSM can operate both as a motor and as a generator. In addition, they stand out for having a low maintenance, since unlike other types of engines the PMSM does not have collector rings or brushes. The control algorithm that is generally used in this type of motor is a vector control, which is divided into Direct Torque Control (DTC) and Field Oriented Control (FOC).

Method: The computational platform where the simulations are carried out is Matlab® software (R2017a) Simulink 8.9, where predetermined blocks and program functions are used for the DTC and FOC vector control diagrams.

Results: Regarding the electromagnetic torque control, FOC presents higher ripple than the DTC, so that, it is concluded that the DTC has greater torque control in relation to the FOC. Regarding to the magnetic flux control, according to the obtained values, the DTC has better control performance than the FOC. For speed control, both the DTC and FOC control have a fast response to disturbances; however, the DTC has a fast control response when the PMSM starts moving from rest, which means that the DTC has a faster response in the transient state and when the engine is in motion FOC has better control performance to disturbance.

Conclusions: When analyzing the most important aspects to determine which control technique is effective, it is concluded that the DTC control technique has greater effectiveness with respect to the FOC control technique. However, it is worth mentioning that the two control techniques are widely used in the industrial sector for driving electric motors, so that, the selection any of these techniques will depend on the process to be carried out.

Downloads

Download data is not yet available.

References

H. Mikhael, H. Jalil, and I. Ibrahim, “Speed Control of Induction Motor using PI and V/F Scalar Vector Controllers,” Int. J. Comput. Appl., vol. 151, no. 7, pp. 36–43, Oct. 2016.

K. Jash, P. Kumar Saha, and G. Kumar Panda, “Vector Control of Permanent Magnet Synchronous Motor Based On Sinusoidal Pulse Width Modulated Inverter with Proportional Integral Controller,” J. Eng. Res. Appl. www.ijera.com ISSN, vol. 3, no. 5, 2013.

R. N. A. Bin Raja Yunus, A. Jidin, N. F. Alias, A. L. erlino, and M. Manap, “Performance analysis of direct torque control of induction machines,” 2013 Int. Conf. Electr. Mach. Syst. ICEMS 2013, pp. 2123–2127, 2013.

X. Dominguez and C. Imbaquingo, “Vector Control for an Interior Permanent Magnet Synchronous Machine with Maximum Torque Per Ampere Strategy Vector Control for an Interior Permanent Magnet Synchronous Machine with,” Rev. Politec., vol. 35, no. 1, pp. 1–5, 2015.

M. A. Magzoub, N. B. Saad, and R. B. Ibrahim, “Analysis and modeling of indirect field-oriented control for PWM-driven induction motor drives,” CEAT 2013 - 2013 IEEE Conf. Clean Energy Technol., pp. 488–493, 2013.

P. R. Gómez, J. L. Flamang, and J. G. Moreno, “Wind turbine electronic emulator using park transform for power control,” 2017 3rd IEEE Work. Power Electron. Power Qual. Appl. PEPQA 2017 - Proc., pp. 1–6, 2017.

S. Morimoto, Y. Asano, T. Kosaka, and Y. Enomoto, “Recent technical trends in PMSM,” 2014 Int. Power Electron. Conf. IPEC-Hiroshima - ECCE Asia 2014, pp. 1997–2003, 2014.

B. Bimal K., Modern Power Electronics and AC Drives -. 2001.

S. K. Rechkemmer, W. Zhang, and O. Sawodny, “Modeling of a Permanent Magnet Synchronous Motor of an E-Scooter for Simulation with Battery Aging Model,” IFAC-PapersOnLine, vol. 50, no. 1, pp. 4769–4774, 2017.

A. Apte, R. Walambe, V. Joshi, K. Rathod, and J. Kolhe, “Simulation of a permanent magnet synchronous motor using Matlab-Simulink,” 11th IEEE India Conf. Emerg. Trends Innov. Technol. INDICON 2014, 2015.

P. Zodape, “Direct Torque Control of Permanent Magnet Synchronous Motor Nitin Kelkar, V.A.Joshi,” Res. Electr. Mech. Eng. Vol., vol. 3, no. 8, pp. 5–8, 2015.

A. R. S. M, “Direct Torque Control Algorithm for Induction Motor Using Hybrid Fuzzy-PI and Anti-Windup PI Controller with DC Current Sensors,” vol. 4, no. 3, pp. 58–63, 2014.

P. Brandstetter, M. Kuchar, H. H. Vo, and C. S. T. Dong, “Induction motor drive with PWM direct torque control,” Proc. 2017 18th Int. Sci. Conf. Electr. Power Eng. EPE 2017, pp. 0–4, 2017.

M. F. a Rahman, L. Zhong, W. Y. Hu, and K. W. Lim, “A direct torque controller for permanent magnet synchronous motor drives,” IEEE Trans. Energy Convers., vol. 14, no. 3, pp. 637–642, 1999.

ABB, “DTC: una técnica de control de motores para todas las estaciones,” Power Product. a better world, 2016.

B. Akin and N. Garg, “Scalar (V/f) Control of 3-Phase Induction Motors,” 2013.

T. Yesilbag, E; Ergene, “Field Oriented Control of Permanent Magnet Synchronous Motors User’s Guide,” Int. Power Electron. Motion Control Conf. Expo., pp. 1–43, 2012.

M. S. Merzoug and F. Naceri, “Comparison of Field Oriented Control and Direct Torque Control for PMSM,” World Acad. Sci. Eng. Technol., vol. 21, no. June, pp. 209–304, 2018.

M. Hasoun, K. Chikh, M. Khafallah, and K. Benkirane, “A Comparative Study of Direct Torque Control and Field Oriented Control for Permanent Magnet Synchronous Motor drives,” no. March, 2017.

Y. Xue, Y. Li, J. D. Zhang, J. Lin, and J. T. Yang, “Application and Simulation of SVPWM Control Techniques in Three-Phase PV Grid-Connected Inverter,” Appl. Mech. Mater., vol. 415, pp. 81–88, 2013.

W. Cuji, “Simulación y Comparación de Algoritmos de Control Vectorial para un Motor Síncrono de Imanes Permanentes.,” Universidad de las Fuerzas Armadas ESPE, 2018.

How to Cite
Cuji, W., & Arcos Avilés, D. (2019). Direct Torque Control and Field Oriented Control for Permanent Magnet Synchronous Motor. Ingeniería, 24(2). https://doi.org/10.14483/23448393.14142
Published: 2019-05-26
Section
Electronic Engineering