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Topographic engineering.

One of the main objectives of topographic surveys has allowed to draw maps or plans of an area of

a limited region or terrain, showing physical characteristics of the terrain, such as rivers, lakes,

reservoirs, roads, forests, rock formations, ponds, dams, dikes, drainage pits or water supply

channels. The accuracy of the measurement will depend on the scale of the map, the method

and the instruments utilized. This document provides the mathematical fundamentals of the

planimeter, that allows to measure the area of uneven or spherical flat surfaces; this instrument

is important in topographic engineering. The knowledge, and the analityc foundation, of this

instrument, makes the article not only of a pedagogical nature, but also it provides a historical

development depicting its evolution and leading to its digital current version.
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Plańımetro

Ingenieŕıa topográfica.

Uno de los objetivos principales de los levantamientos topográficos permite dibujar mapas o

planos de un área de una región o terreno limitado, que muestra las caracteŕısticas f́ısicas del

mismo: ŕıos, lagos, embalses, caminos, bosques, formaciones rocosas, estanques, represas, diques,

pozos de drenaje o canales de suministro de agua. La precisión de la medición dependerá de la

escala del mapa, el método y el instrumento utilizado. El presente documento proporciona los

fundamentos matemáticos del plańımetro, instrumento que permite medir el área de superficies

planas irregulares o esféricas, y el cual es importante en la ingenieŕıa topográfica. El conocimiento

y la base anaĺıtica de este instrumento hacen que el art́ıculo no solo sea de naturaleza pedagógica,

sino que también proporciona un desarrollo histórico que describe su evolución y conduce a la

justificación de su versión digital actual.
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1. Introduction

At the beginning of the nineteenth century, in
the midst of the industrial revolution, there was a
need for an instrument that measured areas of land
and buildings more accurately, represented on a flat
surface. That instrument was called a “ planimeter” .
Initially, they were designed by engineers who developed
several devices. Later, other prototypes were constructed
with variations that improved the precision of these
instruments.

Different models of planimeters were elaborated and a
number of modifications were made from these designs.
The best planimeters are the linear, the polar and the
radial plan. The first planimeter (Figure 1) was designed
by the engineer Johann M. Hermann [1] in 1814, a kind
of cone rotating on an axis, which is compatible with a
wheel that spins with it. It was a very basic planimeter,
being a direct application of the definite integral

∫
(y)dx.

In 1816, Lammle improved this version of the device,
which was constructed in 1817. The engineer Johannes
Oppikofer invented another planimeter in 1826, which
was constructed in 1834, in Paris. Early in 1849, Kaspar
Wetli [2–5] invented another one that was built by Georg
Christoph Starke.

Figure 1: Hermann Planimeter [1].

An important change was made in the planimeter,
in relation to its design and concept, it was performed
by the Swiss mathematician Jakob Amsler-Laffon [6],
which was constructed in 1854, based on the polar and
linear designs (Figure 2). The modern polar planimeter
consists on two articulated arms, for they move along a
circle at the point where they are coupled. In a linear
planimeter, this last point moves along a straight slot.
He also designed a spherical model in 1884. Even though
he did not industrialize it, his prototype was constructed
and it is in exposition in the Arts and Crafts Museum,
in Paris. A radial planimeter was also designed, which
measures the average radius of a polar graphic and serves

as a polar or linear planimeter.

Figure 2: Polar and linear Planimeters [2].

However, an atypical planimeter was designed by the
mathematician and Danish Official Holger Prytz [2] in
1875, and it was made in Denmark since 1887. It has
a simple design (Figure 3), and the accuracy of its
measurements is limited. It was a simple and economical
alternative to the costly Amsler’s polar design, and it
was also easy to transport.

Figure 3: Pritz Planimeter [2].

At present, the planimeters are still in use, but
they are now digital or with a needle. The procedure
remains the same, since it still utilizes the analogical
planimeter techniques, the difference being that it is easy
to handle, for it does not need to compare with previous
readings to make the differentiation, because the data is
entered directly, being fed to a computer program, which
performs the operations using a software.

2. The planimeter

As explained above, the planimeter is an instrument
that was created to find areas of irregular figures on
scaled planes. As it goes deeper into it, it is seen the
innumerable modifications, but all are based on basic
theories, such as:

• Cartesian

• Linear
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• Curvilinear

• Polar

It is explained these models as follows.

2.1. The Cartesian Planimeter

It represents a point in a plane, in a two-dimensional
space, where a reference system is established that places
us in relation to a common origin.

Among the many Cartesian planimeters designed at
the turn of the nineteenth century, the design made
by Jose Ruiz-Castizo [7–10], one of the few that was
designed in Spain and constructed by a Swiss company.
The author explained its mechanical functions and its
analytical justification in the magazine Revista de Obras
Publicas de España [7].

Ruiz-Castizo considered, as observed in figure 4, the
description of the instrument that starts with the curve
y = f(x), where the point MP of the triangle rectangle
MQP and the longitude unites the points M and P,
forming the hypotenuse, the cathetus PQ is constant,
the second cathetus QM is the one that constantly
changes position, magnitude and direction, it takes the
new variable direction as the guideline of the tangent to
a new curve Y = F (x), a point N, arbitrary, the ordinate
MP, and when it moves again the MQ line, it generates
a parallel NN’ to the new cathetus M’Q’, and so on, and
while constantly changing it generates a system of lines
that forms a family of straight lines, which is given by
the new function Y = F (x), which is a family of straight
lines, forming an enveloping.

Figure 4: Generation of the enveloping [10].

The relationship between the two curves is given by
the difference of the triangles MCP and MPQ, where the
differential is:

dY

dx
= tan(MCP ) = tan(MPQ) =

MP

MQ

with which the arc of the curve is described with the
expression:

dσ =

√
1 +

y2 − a2

a2
=
y

a
= y dy (1)

and when it is integrated, it obtains:

a(σ1 − σ0) =

∫ x1

x0

y dx (2)

The planimeter, Figure 5, is in accordance with the
geometric construction and its analytical justification,
the device has two rules, XX’, YY’, plus one piece
YD” with a straight angle at D. The ruele YY’ moves
perpendicularly to XX’, which is fixed, at the end of the
movements in the piece XX’, at the same time as Y Y ’,
and the piece has a movement within the device ”M.as
it moves along Y Y’, this device M carries a pointer
that moves along the given curve. Another device R
moves between YY’ connected to M by a mechanism that
forces R to move in the direction of DD’, which describes
the envelope by a wheel, whose rotation is recorded to
measure its length, equal to the surface of the given
curve. This is a mechanism that performs the movement
of Y DD ’, when the pointer is in M, it moves along the
given curve, to the device R in which the wheel moves
without falling down, with an appropriate inclination, as
in its first sketches.

Figure 5: Initial sketch [10].

The planimeter works for open, closed convex and
closed non-convex curves. The displacement of the base
of NN ’ has as an expression ds = | dx, then give the arc
of the curve a σ, which measures the quotient of an area
by the base, and describes three types of curves.
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• The first is an open curve, with its respective limits
(x0, x1) and (σ0, σ1 ), resulting in the expression
(3):

(σ1 − σ0) =
1

a

∫ x1

x0

y ds+ c (3)

which is the general concept, that is a concluded
from.

• For a closed convex curve, the movement happens
in two times, from AB and from BC. Ruiz-Castizo
developed it in the following manner:

(σ1 − σ0) + (σ′o − σ0) =
1

a

∫ x1

x0

y dx+
−1

a

∫ x1

x0

y′ dx

=
1

a

∫ x1

x0

(y − y′)dx (4)

• And for an image closed non-convex, it takes pieces
from the bow, and subsequently all are added up,
resulting in:

(σ′o − σ0) =
1

a

∫ xm

xn

(y − y′)dx (5)

where the final point coincides with the initial point. The
planimeter can be seen in the Figure 6.

Figure 6: Ruiz-Castizo’s Planimeter [10].

2.1.1. The Rolling and Polar Planimeter

The structure of these two models are very similar
and they are a clear example where the theory of vector
calculus is applied, since it is avoided to work with
complex trigonometric and algebraic integrals, which is
simplified by applying Green’s theorem4.

2.1.2. The Rolling Planimeter

The rolling planimeter, as seen in Figure 7 below,
consists of a pivot, a roller, a wheel, the arm of the tracer
and the tracer5.

Figure 7: Rolling Planimeter [4].

Let P = (x, y) being a point on the closed smooth
curve C boundary of a simply connected region R, and let
us suppose that (0, Y ) describes the pivot position of the
rolling planimeter as shown in Figure 8. The planimeter’s
movements goes only forwards and backwards, now
considering the pivot moving up and down on the Y axis
and linked to a line segment of fixed length L towards
the tracer in P = (x; y) ∈ C. as the planimeter traces
the curve, the pivot moves up and down the y axis while
the tracer arm rotates over the pivot.

Considering that the tracer is moving along a
portion of a very small curve of C, from a point (x, y)
counterclockwise until (x + dx, y + dy). The pivot has a
corresponding shift from the position (0;Y ) to (0, Y +
dY ). It is desired to determine the measure (in turns)
of the wheel on the arm of the tracer resulting from
this small movement, which can be decomposed into two
parts. First, the pivot is turned along the Y axis of (0, Y )
to (0, Y + dY ), so the arm of the tracer maintain a fixed
angle of α between the Y axis and the segment that
unites the pivot and the tracer.

Figure 8: Rolling Planimeter.

Source: own

4Green’s theorem is called this way after the British scientist George Green. This theorem relates a line integral around a closed
and simple curve C, a double integral over the flat region D limited by C, being a special case of Stokes’ Theorem

5for further information see Tanya Leise [4]
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Then, the tracer rotates in an angle dθ (without
moving the roll) so the tracer moves from (x, y + dY )
to (x + dx, y + dy). Nevertheless, during this operation
the wheel on the tracer arm rolls a distance without
αdY + adθ = x/L dY + adθ, since only the component
of the movement perpendicular to the tracer arm affects
the movement of the wheel. The planimeter returns to its
original position after traveling all C and so the angle of
rotation of the tracer arm is again 0,

∫
C
dθ = 0, therefore

the total distance traveled by the wheel of the tracer arm
is:

DTR =
1

L

∫

C

xdY (6)

It can be seen that x2 + (y − Y )2 = L2, since
the tracer arm can not rotate (passing the roller) we
have just one value of Y for each point (x, y) which
is Y = y −

√
L 2− x2 (given the orientation of the

planimeter as shown in Figure 8, the tracer is always
above the pivot, which is Y < y). This implies that
dY = dy + x

L2−x2 dx. When applying Green’s Theorem6.

We see that
∫
C

x
L2−x2 dx = 0 and we discover that the

total distance traveled is

DTR =
1

L

∫

C

(
xdy +

x2

L2 − x2
dx

)
=

1

L

∫

C

xdY (7)

Therefore, the area enclosed by curve C is equal to the
length L of the tracer arm by the total distance traveled
by the wheel.

2.1.3. The Polar Planimeter

A planimeter as the one in Figure 9 consists of a pole,
a polar arm, a pivot, a wheel, a tracer arm and a tracer.

It can be verified the polar planimeter, replacing the
point (0, Y ) with (b cosφ; b sinφ) to mirror the circular
motion of the pivot; consider the motion of the tracer of
the polar planimeter moving along a small portion of the
C curve from the point (x, y) to the point (x + dx, y +
dy). The pivot has a correspondent displacement from
the position (b cosφ; b sinφ) to the position (bcos(φ +
dφ), b sin(φ + dφ)). Since a displacement is considered
infinitesimal, It can linearize the new coordinates, which
are converted in (8):

(b cosφ− b sinφdφ, b sinφ+ b cosφdφ) (8)

Figure 9: Polar Planimeter [4].

Additionally, the movement is broken down into two
parts. First, the pivot rolls along the arc to its new
position with the tracer arm parallel to its original
orientation, then the tracer moves to (x–b sinφdφy +
b cosφdφ) as shown in figure 10. During this operation,
only the component of the movement perpendicular to
the tracer arm affects the movement of the wheel and the
wheel rotates a distance equal to the point product of the
displacement vector with the unit vector perpendicular
to the tracer arm, then the tracer arm rotates an dθ
(without changing the pivot position). So the tracer
reaches the final point (x+dx; y+dy) and the wheel rolls
a distance adθ. The wheel covers a combined distance
during these two small movements of (10):

1

L
(b sinφ− y, x− b cosφ) · (−b sinφ, b cosφ)dφ+ adθ = (9)

b

L
(x cosφ+ y sinφ− b)dφ+ adθ

The planimeter returns to its original position after
travelling along the entire C curve, so that the total angle∫
C
dθ of the tracer arm rotation is equal to a 0, just

like the total angle
∫
C
dθ of rotation of the polar arm.

Therefore, the total distance travelled by the wheel of
the tracer arm is:

DTR =
b

L

∫

C

(x cosφ+ y sinφ)dφ (10)

Note that:

(x–b cosφ)2 + (y − b sinφ)2 = L2 (11)

and, when we transform the polar coordinates x =
rcosφ, y = rsinφ, we obtain:

(r cos θ − b cosφ)2 + (r sin θ − b sinφ)2 = L2 (12)

When operating it, we obtain:

6For the theorem on Green’s theorem, see texts [8, 9] and [3]
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Figure 10: Polar Planimeter.

Source: own

r2 cos2 θ − 2rb cos θ cosφ+ b2 cos2 φ+ (13)

r2 sin2 θ − 2rb sin θsinφ+ b2 sin2 φ = L2

r2–2rb(cos θ cosφ+ sin θ sinφ) + b2 = L2

Working the trigonometric identity: cos(θ − φ) =
r2+b2−L2

2rb , liberating

φ = θ − cos−1

(
r2 + b2 − L2

2rb

)
(14)

and deriving,

dφ = dθ − −1√
1−

(
r2+b2−L2

2rb

)2

4r2b− (r2 + b2 − L2)2b

(2rb)2

(15)

dφ = dθ +
r2 − b2 + L2

r
√

4r2b2 − (r2 + b2 − L2)2
dr (16)

This way the integral DTR = b
L

∫
C

(x cosφ +
y sinφ)dφ in polar coordinates is transformed in

DTR =
b

L

∫

C

(x cosφ+ y sinφ)dφ = (17)

b

L
((r cos θ cosφ+ r sin θ sinφ)dφ)

where C ′ is the curve in the level rθ correspondent to
C in the level xy

=
b

L

∫

C′
r cos(θ − φ)dφ (18)

b

L

∫

C′

(
r2 + b2 − L2

2b

(
dθ+

r2 − b2 + L2

r
√

4r2b2 − (r2 + b2 − L2)

))
dφ

(19)

= b
L

∫
R

∂
∂r

(
r2+b2−L2

2b

)
drdθ, by the grenn Theorem

=
1

L

∫ ∫

R

ddrdθ (20)

=
1

L
(area de R) (21)

Therefore, the area of region R enclosed by C is L
times the total distance traveled by the wheel of the
tracer arm and this equality mathematically shows the
operation of the polar planimeter.

3. Conclusions

We have presented part of the historical development
of the Planimeter, a measurement instrument used in
cartography and topography these areas are of knowledge
transverse to the earth sciences, as well as the evolution
of the Cartesian planimeter, the rolling planimeter and
the polar planimeter. After this, we presented deductions
that allowed us to represent it by using mathematics,
initially utilizing the concept of the definite integral
and then with the application of Green’s theorem as
a language for the modeling of its functioning, thus
demonstrating the effectiveness of the instrument and
its accuracy in the measurement of areas on different
regions.
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[2] A. Krahe, “El plańımetro de Prytz”, may 12 th 2017.
[Online] Available: http://ropdigital.ciccp.es/

pdf/publico/1925/1925_tomoI_2429_02.pdf

[3] J. E. Marsden, A. J. Tromba “Cálculo vectorial”,
5a. edición, Wilmington, Addison-Wesley
Iberoamericana, 2004.

[4] T. Leise, “As the Planimeters Wheel Turns:
Planimeter Proofs for Calculus Class”, may 12 th
2017. [Online] Available: https://tleise.people.

amherst.edu/HomePage/LeisePlanimeter.pdf
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Universidad Distrital Francisco José de Caldas - Facultad tecnológica



Analytical foundation of the planimeter 317

[8] J. Stewart “Cálculo multivariable”, México:
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