Caracterización del drenaje ácido en la mineria de esmeralda Quípama-Boyacá

Characterization of acid drainage in the minerals of esmeralda Quipama–Boyacá

  • Nayive Nieves Pimiento
  • Alix Solano Figueroa
Palabras clave: Acid drained, in situ, sulfate, unloading (en_US)
Palabras clave: drenaje ácido, in situ, sulfuros, descarga (es_ES)

Resumen (es_ES)

Los drenajes ácidos son derivados de la formación del proceso de algunos sulfuros minerales al contacto del oxígeno del aire y el agua, esta formación involucra procesos químicos, biológicos y fenómenos físico-químicos. Con el objetivo de caracterizar el drenaje acido en la minería esmeraldífera en el municipio de Quipama-Boyacá, se ha propuesto el estudio y análisis de los parámetros físico-químicos de aguas subterráneas para la mina Divino Niño. Para la determinación de las características del drenaje acido, se llevaron a cabo tomas in situ en el interior de la mina y las descargas. Los resultados obtenidos determinaron que; las aguas de los drenajes al interior de la mina presentaron transformaciones físicas, químicas y biológicas las cuales dieron origen a drenaje ligeramente acido de clase blanda, presentando aniones y cationes en disolución, se mostraron elevadas concentraciones de SO4, Fe, Al, Ca. Este fue un primer estudio desarrollado al interior de la mina de esmeralda Divino Niño en el municipio de Quipama.

Resumen (en_US)

Acid drainage is derived from the process formation of some minerals Sulphur’s to oxygen contact with water and air, that formation involved chemistry processes, biologic and phenomenon’s Chemistry – Physicist. With the objective to characterization the acid drained in to emeralds miners in the municipality of Boyacá – Quipama, there has been proposed the study and analysis of the parameters chemist – physicist of underground waters for the mine “Divino niño”. Taking into account the determination of the characteristics of the acid drainage, captures were carried out in situ inside the mine and downloads. The obtained results determined that water of the drainages to the interior of the mine presented physical, chemical and biological transformations which gave origin to drainage lightly acid of soft class, presenting anions and cations in issolution, there appeared high concentrations of SO4, Faith, To, Ca. This one, was the First study developed to the interior of the mine of emerald Divine Child in Quipama's municipality.


La descarga de datos todavía no está disponible.


Osvaldo Aduvire. 2006. Drenaje acido de mina generación y tratamiento. Tratamiento de Aguas Acidas de Mina.

Ball, J., Nordstrom, K., McCleskey, B. y Bangthanh, B. 1999. A new methodfor the direct determination of dissolved Fe(III) concentration in acid mine drainage. Technical Meeting Charleston South Carolina. Contamination from hard-rock mining, waste-resources, USA. Volume 1, Seccion D. 297-304.

Kevin A. Morin and Nora M. Hutt; Environmental geochemistry of minesite drainage: practical theory and case studies. Volume 1, 63-138.

Berglund, S., Malmstrom, M., Jarsjo, J. y Destouni, G. 2003. Effects of spatially variable flow on the attenuation of acid mine drainage in groundwater. Mining and the Environment Conference, Sudbury ´03, Ontario, Canada. 10pp.

Bowell, R.J. y Parshley, J.V. 2005. Control of pit-lake water chemistry by secondary minerals, Summer Camp Pit, Getchell mine, Nevada. Chemical Geology, 215, 373-385.

Brandl, H. 2001. Microbial leaching of metals. En: Microbial Diversity in Bioleaching Environments. Zurich, Switzerland, 192-206.

Chang, I. Shin, P. y Kim, B. 2000. Biological treatment of acid mine drainage under sulphatereducing condition with solid waste materials as substrate. Water Research, 34 (4), 1269-1277.

Dempsey, B. Roscoe, H., Ames, R., Hedin, R. y Jeon, B. 2001. Ferrous oxidation chemistry in passive abiotic systems for the treatment of mine drainage. Geochemistry: Exploration, Environment, Analysis, 1, 81-88.

Edwards, K., Schrenk, M., Hamers. R. y Banfield, J.F. 1998. Microbial oxidation of pirite: experiments using microorganisms from an extreme acidic environment. American Mineralogist,83, 1444-1453.

Fernández-Remolar, D., Goméz-Elvira, J., Goméz, F., Sebastián, E., Martíin, J., Manfredi, J., Torres, J., González-Kesler, C. y Amils, R. 2004. The Tinto river, an extreme acidic environment under control of iron, as an analog of the Terra Meridiani hematite site of Mars. Planetary and Space Science, 52, 239-248.

Fowler, T., Colmes, P. y Crundwell, F. 1999. Mechanism of pyrite dissolution in the presence of Thiobacillus ferrooxidans. Applied and Environmental Microbiology, 65(7), 2987-2993.

Hallberg, K. y Johnson, B. 2002. Passive mine water treatment at the former Wheal Jane Tin Mine, Cornwall: important biogeochemical and microbiological lessons. Land Contamination and Reclamation, 11 (2), 213-220.

Hasche, A. y Wolkersdorfer, C. 2004. Mine water treatment with a pilot scale RAPS-system. En: Treatment technologies for mining impacted water. Berg-und Huttenmannischer Tag. TU Bergakedemie Freiberg. 93-99.

Kim, J.J. y Kim, S.J. 2003. Environmental, mineralogical, and genetic characterization of ochreous and white precipitates from acid mine drainages in Taebaeg, Korea. Environmental Science Technology, 37, 2120-2126.

Lapakko, K. 2002. Metal mine rock and waste characterization tools: an overview. Mining, Minerals and Sustainable Development. (IIED-Minesota Department of Natural Resources, U.S.) Nº 67.29pp.

Montero, I., Brimhall, G., Alpers, C. y Swayze, G. 2005. Characterization of waste rock associated with acid drainage at the Penn mine, California, by ground-based visible to short-wave infrared reflectance spectroscopy assisted by digital mapping. Chemical Geology, 215, 453-472.

Ong, C., Cudahy T. y Swayze, G. 2003. Predicting acid drainage related physicochemical measurements using hyperspectral data. 3rd. EARSeL Workshop on Imaging Spectroscopy, Oberpfaffenhofen, Australia. 11pp.

Schultz, C. y Buisman, C. 1999. Biological treatment of effluents from the mining and metallurgical industry using Thiopaq technology. International Mining and Environment Congress, Lima, Perú, 431-437.

Yahya, A. y Johnson, B. 2001. Bioleaching of pyrite at low pH and redox potentials by novel mesophilic Gram-positive bacteria. Hydrometallurgy, 63, 181-188.

Young, C. 1999. The daylight solution: ultraviolet radiation and the remediation of cyanidecontaining water and acid-mine drainage. Department of Metallurgical Engineering. Montana Tech. USA. 5 pp.

Ziemkiewicz, P., Donovan, J., Frazier, J., Daly, M., Black, C. y Wener, E. 2000. Experimental injection of alkaline lime slurry for in-situ remediation of an acidic surface-mine aquifer. WestVirginia University. Morgantown, WV, USA. 26pp

Zhu, C. y Burden, D. 2001. Mineralogical compositions of aquifer matrix as necessary initial conditions in reactive contaminant transport models. Journal of Contaminant Hydrology, 51, 145-161.

Zhu, C. y Anderson, G. 2002. Environmental applications of geochemical modeling. Cambridge. UK. 284pp.

Cómo citar
Nieves Pimiento, N., & Solano Figueroa, A. (2017). Caracterización del drenaje ácido en la mineria de esmeralda Quípama-Boyacá. Visión Electrónica, 11(2), 318-326.
julio-diciembre de 2017
Publicado: 2017-12-17
Visión de Caso