State of the art in software defined networking (SDN)

Estado del arte en redes definidas por software (SDN)

Palabras clave: Controller, IoT, Network Function Virtualization (NFV), OpenFlow, ONF, Software-Defined Networking (SDN) (en_US)
Palabras clave: Controlador, IoT, NFV, OpenFlow, ONF, SDN (es_ES)

Resumen (en_US)

The growth of networks at a global level is inevitable due to the increase of users, devices and applications, such as: Internet of Things (IoT), processing and analysis of large amounts of information (Big Data), or streaming audio and video, which has demanded from the systems, greater storage resources and bandwidth. To this purpose, diverse paradigms have emerged for the centralized management of all the components of a network through fully administrable, centralized and dynamic technological platforms; among these is SDN (Software-Defined Networks). This document, consequently, establishes the state-of-art from a documentary research of a categorical type to be used as a frame of reference for research in the area of SDN by the Research Group of New Technologies of Social Application GIDENUTAS ascribed to the University Francisco Jose de Caldas. This is chronologically limited to a review, from 2007 until today, focused on the countries that have promoted the development and implementation of this new paradigm, using databases such as IEEE Xplore, Google Scholar, as well as documents from standardization organizations such as ONF and ITU.

Resumen (es_ES)

El crecimiento de las redes a nivel global es inevitable debido al aumento de usuarios, dispositivos y aplicaciones derivados de conceptos como pueden ser el Internet de las cosas (IoT, de inglés Internet-of-Things), el procesamiento y análisis de grandes cantidades de información (Big Data), o la transmisión de audio y video en vivo (Streaming), lo cual ha demandado de los sistemas mayores recursos de almacenamiento, ancho de banda y alta flexibilidad, entre otras características. Por lo anterior, han emergido paradigmas para la gestión centralizada de todos los componentes de una red mediante plataformas tecnológicas totalmente administrables, centralizadas y dinámicas; entre estas se encuentran SD-WAN (Software Defined-Wide Área Network) o SDR (Software-Defined Radio), ambas surgidas gracias al concepto de las Redes Definidas por Software o SDN (del inglés Software-Defined Networking). El presente documento, en consecuencia, establece un estado de arte a partir de una investigación documental de tipo categorial para utilizarse como un marco de referencia de investigaciones en el área de SDN por el grupo de Investigación de Nuevas Tecnologías de Aplicación Social GIDENUTAS adscrito a la Universidad Distrital Francisco José de Caldas. Esta se limita cronológicamente a una revisión, desde el año 2007 hasta hoy, enfocada en los países que han promovido el desarrollo e implementación de este nuevo paradigma, recurriendo a bases de datos como IEEE Xplore, Google Scholar, así como documentos de organizaciones de estandarización como la ONF y la ITU.

Descargas

La descarga de datos todavía no está disponible.

Referencias

[1] OEDC, “Facts and figures", Itu, 2013, pp. 14–16. https://doi.org/10.1787/9789264202085-en

[2] Stanford University, “Ethane: una arquitectura de protección para redes empresariales”. [Online]. Available: http://yuba.stanford.edu/ethane/

[3] T. Nadeau and K. Gray, " SDN: Software Defined Networks: An Auhoritative Review of Network Programmability Technologies", USA: O'Reilly Media, 2013.

[4] D. Maldonado, “Diseño e implementación de una aplicación bajo una Arquitectura SDN”, thesis, Pontificia Universidad Javeriana, Bogota, 2014, pp. 1–80.

[5] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford, S. Shenker and J. Turner, “OpenFlow”, ACM SIGCOMM Comput. Commun. Rev., vol. 38, no. 2, 2008, pp. 69-74, https://doi.org/10.1145/1355734.1355746

[6] W. Haisang, “From Clean Slate to SDN", 2012. [Online]. Available: http://carrier.huawei.com/en/success-stories/softcom/cleanslatetosdn

[7] Radius Stories at the Edge, “The History of NSX and the Future of Network Virtualization”, 2016. [Online]. Available: https://www.vmware.com/radius/history-nsx-future-network-virtualization/

[8] R. Hernández Sampieri, C. Fernandez Collado and P. Baptista Lucio, "Metodología de la investigación", México: Mc Graw Hill, 2010.

[9] Open Networking Foundation, “Arquitectura de las redes definidas por software (SDN)”, 2014. [Online]. Available: www.opennetworking.org

[10] B. Valencia, S. Santacruz, L. Y. Becerra and J. J. Padilla, “Mininet : una herramienta versátil para emulación y prototipado de Redes Definidas por Software 1 Mininet : a versatile tool for emulation and prototyping of Software Defined Networking”, Entre ciencia e ingenieria, vol. 9, no. 17, 2015, pp. 62–70.

[11] M. I. Hamed, B. M. Elhalawany, M. M. Fouda and A. S. T. Eldien, “A Novel Approach for Resource Utilization and Management in SDN”, 13th International Computer Engineering Conference (ICENCO), 2017, pp. 337–342. https://doi.org/10.1109/ICENCO.2017.8289810

[12] B. Pandya, S. Parmar, Z. Saquib and A. Saxena, “Framework for Securing SDN Southbound communication", International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), 2017. https://doi.org/10.1109/ICIIECS.2017.8275912

[13] A. Jalili, H. Nazari, S. Namvarasl and M. Keshtgari, “A Comprehensive analysis on Control Plane Deployment in SDN : In-Band versus Out-of-Band solutions”, IEEE 4th International Conference on Knowledge-Based Engineering and Innovation (KBEI), 2017. https://doi.org/10.1109/KBEI.2017.8324949

[14] L. Richarson and S. Ruby, "RESTful Web Services", O'Reilly Media, 2008.

[15] K. Pentikousis, Y. Wang and W. Hu, “MobileFlow:Toward Software-Defined Mobile Networks”, IEEE Commun. Mag., vol. 51, no. 7, 2013, pp. 44–53. https://doi.org/10.1109/MCOM.2013.6553677

[16] J. Tourrilhes, P. Sharma, S. Banerjee and J. Pettit, “SDN and OpenFlow Evolution: A Standards Perspective”, Computer (Long. Beach. Calif), vol. 47, no. 11, 2004, pp. 22–29. https://doi.org/10.1109/MC.2014.326

[17] W. Zhou, L. Li and W. Chou, “SDN Northbound REST API with Efficient Caches”, IEEE International Conference on Web Services, 2014, pp. 257–264. https://doi.org/10.1109/ICWS.2014.46

[18] W. Zhou, L. Li, M. Luo and W. Chou, “REST API Design Patterns for SDN Northbound API”, 28th International Conference on Advanced Information Networking and Applications Workshops, 2014, pp. 358–365. https://doi.org/10.1109/WAINA.2014.153

[19] ETSI, “Network Functions Virtualisation (NFV)”, 2012. [Online]. Available: https://www.etsi.org/technologies-clusters/technologies/nfv

[20] G. Bianchi, et al., “Superfluidity: a flexible functional architecture for 5G networks”, Trans. Emerg. Telecommun. Technol., vol. 27, no. 9, 2016, pp. 1178–1186, https://doi.org/10.1002/ett.3082

[21] R. Bifulco and R. Canonico, “Analysis of the handover procedure in Follow-Me Cloud”, IEEE Int. Conf. Cloud Networking, CLOUDNET, 2012, pp. 185–187. https://doi.org/10.1109/CloudNet.2012.6483683

[22] M. B. Al-Somaidai, “Survey of Software Components to Emulate OpenFlow Protocol as an SDN Implementation”, Am. J. Softw. Eng. Appl., vol. 3, no. 6, 2014, pp. 74, https://doi.org/10.11648/j.ajsea.20140306.12

[23] Open Networking Foundation, “SDN Architecture”, 2016, [Online]. Available: https://www.opennetworking.org/wp-content/uploads/2013/02/TR_SDN_ARCH_1.0_06062014.pdf

[24] Open Networking Lab (ON.Lab), “ON.Lab Delivers Software for New Open Source SDN Network Operating System - ONOS”, 2014. [Online]. Available: https://www.prnewswire.com/news-releases/onlab-delivers-software-for-new-open-source-sdn-network-operating-system--onos-300004797.html

[25] ON.LAB, “Introducing ONOS - a SDN network operating system for Service Providers”, 2014. [Online]. Available: http://onosproject.org/wp-content/uploads/2014/11/Whitepaper-ONOS-final.pdf

[26] M. Paliwal, D. Shrimankar and O. Tembhurne, “Controllers in SDN: A Review Report”, IEEE Access, vol. 6, pp. 36256–36270. https://doi.org/10.1109/ACCESS.2018.2846236

[27] J. L. G. Rodriguez Farfán, “Integracion de redes IP utilizando SDN”, thesis, Instituto Tecnológico Buenos Aires, 2017.

[28] J. Medve, R. Varga and A. Tkacik, “OpenDaylight: Towards a model-driven SDN controller architecture”, Proceeding of IEEE International Symposium on a World of Wireless, Mobile and Multimedia Networks 2014, 2014. https://doi.org/10.1109/WoWMoM.2014.6918985

[29] SDX Central, “What is VMware NSX and VMware SDN Network Virtualization?”, 2012. [Online]. Available: https://www.sdxcentral.com/vmware/definitions/what-is-vmware-nsx/

[30] P. Morreale and J. Anderson, “Software Defined Networking”, Boca Ratón: CRC Press, 2014, pp. 1–67, https://doi.org/10.1201/b17708

[31] SdxCentral, “Network Virtualization Report: SDN Controllers, Cloud Networking Available Now”, 2017. [Online]. Available: https://www.sdxcentral.com/articles/announcements/network-virtualization-sdn-controllers-report/2017/08/

[32] Huawei Technologies, “Huawei Agile Campus Network Solution Brochure”, 2018. [Online]. Available: http://e.huawei.com/en/related-page/solutions/technical/agile-networking/agile-campus-solutions/agile-campus/brochure/Solutions_Campus_network

[33] H. Jang and J. Lin, “SDN Based QoS Aware Bandwidth Management Framework of ISP for Smart Homes", IEEE SmartWorld, Ubiquitous Intell. Comput. Adv. Trust. Comput. Scalable Comput. Commun. Cloud Big Data Comput. Internet People Smart City Innov., 2017, pp. 1–6. https://doi.org/10.1109/UIC-ATC.2017.8397480

[34] H. C. Jang, C. W. Huang and F. K. Yeh, “Design a bandwidth allocation framework for SDN based smart home", IEEE Annu. Inf. Technol. Electron. Mob. Commun. Conf. IEEE IEMCON, 2016. https://doi.org/10.1109/IEMCON.2016.7746320

[35] A. Mckeown, H. Rashvand, T. Wilcox and P. Thomas, “Priority SDN Controlled Integrated Wireless and Powerline Wired for Smart-Home Internet of Things”, IEEE 12th Intl Conf on Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and Communications and Its Associated Workshops (UIC-ATC-ScalCom), 2015, pp. 1825–1830. https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.331

[36] S. A. Lazar and C. E. Stefan, “Future vehicular networks: what control technologies?”, International Conference on Communications (COMM), 2016. https://doi.org/10.1109/ICComm.2016.7528203

[37] A. U. Khan and B. K. Ratha, “Time series prediction QoS routing in software defined vehicular ad-hoc network", International Conference on Man and Machine Interfacing (MAMI), 2015, pp. 1–6. https://doi.org/10.1109/MAMI.2015.7456576

[38] T. Theodorou and L. Mamatas, “CORAL-SDN: A software-defined networking solution for the Internet of Things,” IEEE Conference on Network Function Virtualization and Software Defined Networks (NFV-SDN), 2017, pp. 1–2. https://doi.org/10.1109/NFV-SDN.2017.8169870

[39] P. Jayashree and F. I. Princy, “Leveraging SDN to Conserve Ener in WSN An Analysis", 3rd International Conference on Signal Processing, Communication and Networking (ICSCN), 2015. https://doi.org/10.1109/ICSCN.2015.7219904

[40] S. Ali and M. Ghazal, “Real-time Heart Attack Mobile Detection Service (RHAMDS): An IoT use case for Software Defined Networks”, IEEE 30th Canadian Conference on Electrical and Computer Engineering (CCECE), 2017, pp. 1–6. https://doi.org/10.1109/CCECE.2017.7946780

[41] S. Jain, et al., “B4: experience with a globally-deployed software defined wan”, Proceedings of the ACM SIGCOMM 2013 conference on SIGCOMM - SIGCOMM ’13, 2013, pp. 3-14, https://doi.org/10.1145/2486001.2486019

[42] A. Asensio, L. Gifre, M. Ruiz and L. Velasco, “Carrier SDN for flexgrid-based inter-datacenter connectivity", 16th International Conference on Transparent Optical Networks (ICTON), 2014, pp. 1–4. https://doi.org/10.1109/ICTON.2014.6876337

[43] B. Y. Yoon, S. Kim and J.-H. Lee, “Transport SDN Architecture for Distributed Cloud Services”, 12th International Conference on Optical Internet 2014 (COIN), 2014, pp. 14–15. https://doi.org/10.1109/COIN.2014.6950614

[44] Z. Yongkai, Y. Hang, Z. Lijun, L. Guobao and L. Ge, “Multiple SDN controller orchestration for financial cloud”, International Conference on Security of Smart Cities, Industrial Control System and Communications (SSIC), 2016, pp. 1–5. https://doi.org/10.1109/SSIC.2016.7571809

[45] P. Varga, et al., “Real-time security services for SDN-based datacenters", 13th International Conference on Network and Service Management (CNSM), 2017, pp. 1-9. https://doi.org/10.23919/CNSM.2017.8256030

[46] J. Teixeira, G. Antichi, A. Del Chiaro, S. Giordano and A. Santos, “Datacenter in a Box: Test Your SDN Cloud-Datacenter Controller at Home”, Second European Workshop on Software Defined Networks, 2013, pp. 99–104. https://doi.org/10.1109/EWSDN.2013.23

[47] E. K. Ali, M. Manel and Y. Habib, “An Efficient MPLS-Based Source Routing Scheme in Software-Defined Wide Area Networks (SD-WAN)”, IEEE/ACS 14th International Conference on Computer Systems and Applications (AICCSA), 2017, pp. 1205–1211. https://doi.org/10.1109/AICCSA.2017.165

[48] I. Elgendi, K. S. Munasinghe and A. Jamalipour, “A three-tier SDN architecture for DenseNets", 9th International Conference on Signal Processing and Communication Systems (ICSPCS), 2015, pp. 1–7, https://doi.org/10.1109/ICSPCS.2015.7391793

[49] P. Demestichas, et al., “5G on the Horizon: Key Challenges for the Radio-Access Network”, IEEE Veh. Technol. Mag., vol. 8, no. 3, 2013, pp. 47–53. https://doi.org/10.1109/MVT.2013.2269187

[50] Cisco, “Cisco Visual Networking Index: Global Mobile Data Traffic Forecast Update, 2016–2021 White Paper - Cisco”, 2017. [Online]. Available: https://www.cisco.com/c/en/us/solutions/collateral/service-provider/visual-networking-index-vni/mobile-white-paper-c11-520862.html

[51] X. Costa Perez, A. Garcia Saavedra, L. XI, T. Deiss and O. De La Antonio, “5G- ( Rosshaul : an Sdn / Nfv Integrated Fronthaul / Backhaul Transport Network Architecture”, vol. 24, no. 1, 2017, pp. 38–45. https://doi.org/10.1109/MWC.2017.1600181WC

[52] A. De La Oliva, et al., “Xhaul: toward an integrated fronthaul/backhaul architecture in 5G networks”, IEEE Wirel. Commun., vol. 22, no. 5, 2015, pp. 32–40. https://doi.org/10.1109/MWC.2015.7306535

[53] A. Sutton, “5G network architecture”, J. Inst. Telecommun. Prof., vol. 12, 2018, pp. 8–15.

[54] L. Cui, F. R. Yu and Q. Yan, “When big data meets software-defined networking: SDN for big data and big data for SDN”, IEEE Netw., vol. 30, no. 1, 2016, pp. 58–65. https://doi.org/10.1109/MNET.2016.7389832

[55] W. Hong, K. Wang and Y.-H. Hsu, “Application-Aware Resource Allocation for SDN-based Cloud Datacenters”, International Conference on Cloud Computing and Big Data, 2013, pp. 106–110. https://doi.org/10.1109/CLOUDCOM-ASIA.2013.44

[56] P. Samadi, D. Calhoun, H. Wang and K. Bergman, “Accelerating Cast Traffic Delivery in Data Centers Leveraging Physical Layer Optics and SDN”, International Conference on Optical Network Design and Modeling, 2014.

[57] Y. Han, S. s. Seo, J. Li, J. Hyun, J. H. Yoo and J. W. K. Hong, “Software defined networking-based traffic engineering for data center networks”, The 16th Asia-Pacific Network Operations and Management Symposium, 2014, pp. 1–6, https://doi.org/10.1109/APNOMS.2014.6996601

[58] I. Monga, E. Pouyoul and C. Guok, “Software-Defined Networking for Big-Data Science - Architectural Models from Campus to the WAN", SC Companion: High Performance Computing, Networking Storage and Analysis, 2012, pp. 1629–1635. https://doi.org/10.1109/SC.Companion.2012.341

[59] P. Qin, B. Dai, B. Huang and G. Xu, “Bandwidth-Aware Scheduling With SDN in Hadoop: A New Trend for Big Data", IEEE Systems Journal, vol. 11, no. 4, 2017, pp. 2337–2344. https://doi.org/10.1109/JSYST.2015.2496368

[60] “P4 Language Consortium.” [Online]. Available: https://p4.org/

[61] P. Bosshart, et al., “Programming Protocol-Independent Packet Processors”, ACM SIGCOMM Computer Communication Review, vol. 44, no. 3, 2014, pp. 88–95, https://doi.org/10.1145/2656877.2656890

[62] IRTF, "Software-Defined Networking Research Group (SDNRG)”, 2017. [Online]. Available: https://irtf.org/concluded/sdnrg

[63] ITU, "Software-defined Networking (SDN)”, 2017. [Online]. Available: https://www.itu.int/en/ITU-T/sdn/Pages/default.aspx

[64] “Open Source Mano – ETSI”. [Online]. Available: https://osm.etsi.org/

[65] T. Ninikrishna, S. Sarkar, R. Tengshe, M. K. Jha, L. Sharma, V. K. Daliya and S. K. Routray, “Software defined IoT: Issues and challenges”, International Conference on Computing Methodologies and Communication (ICCMC), 2017, pp. 723–726. https://doi.org/10.1109/ICCMC.2017.8282560

[66] M. Ketel, “Enhancing BYOD Security through SDN”, SoutheastCon, 2018, pp. 1–2, https://doi.org/10.1109/SECON.2018.8479230

[67] E. Rojas, “From Software-Defined to Human-Defined Networking: Challenges and Opportunities”, IEEE Netw., vol. 32, no. 1, pp. 179–185. https://doi.org/10.1109/MNET.2017.1700070
Cómo citar
Barrera Pérez, M., Serrato Losada, N., Rojas Sánchez, E., & Mancilla Gaona, G. (2019). Estado del arte en redes definidas por software (SDN). Visión Electrónica, 13(1). Recuperado a partir de https://revistas.udistrital.edu.co/ojs/index.php/visele/article/view/14424
Número preliminar
Publicado: 2019-01-31
Sección
Visión Actual