Uso de árboles de decisión para medir el impacto de la incertidumbre operativa en el beneficio de centralizar la cadena de suministro

A decision-tree-based assessment of the impact of the operational uncertainty on the benefit of centralizing supply chain decisions

Palabras clave: collaboration, decision trees, integration, supply chain management (en_US)
Palabras clave: árboles de decisión, cadena de suministro, colaboración, integración (es_ES)

Resumen (es_ES)

Mientras otros estudios tratan la relación entre la incertidumbre en la demanda y el beneficio del manejar centralizadamente una cadena de suministro, aquí se aborda el impacto de la incertidumbre operativa (productividad) de los eslabones sobre este beneficio. Usando árboles de decisión, el beneficio del manejo central se calcula como la diferencia entre la ganancia esperada de una cadena así administrada y la suma de las ganancias esperadas de los eslabones si decidieran individualmente. Resulta que la centralización es más redituable a más incierta la productividad, dado que la certeza en bajas productividades limita el provecho de la supresión de la incertidumbre en la demanda de los eslabones intermedios, mientras que la certeza en altas productividades causa que los eslabones, por separado y manejados centralmente, tomen las mismas decisiones. Se concluye que existe un fuerte efecto interactivo de las incertidumbres en productividad y en demanda sobre la ventaja de administrar centralmente la cadena.

Resumen (en_US)

Several studies deal with the relation between demand uncertainty and the worth of centralized chain management. This work, in contrast, explores the effect of the links’ operational variability on said benefit. Decision trees are used to model the entities’ decisions while the benefit of centralizing the chain management is measured as the difference between the expected profit of the centralized chain and the sum of the expected link profits when acting separately.  The worth of centralized chain management increases the more uncertain the productivity is, as a certainty in low productivities decreases the benefit of suppressing the intermediate links’ demand uncertainty, while a certainty in high productivities causes that the links, acting separately, make the same decisions as when centrally managed. The results show that there is a strong, interactive effect of productivity and demand uncertainty on the benefit accrued by centralizing the chain decisions.

Descargas

La descarga de datos todavía no está disponible.

Referencias

J. Thénié, J. P. Vial, “Step decision rules for multistage stochastic programming: A heuristic approach”, Automatica, 44(6):1569-1584, 2008. https://doi.org/10.1016/j.automatica.2008.02.001

S. Nickel, F. Saldanha-da-Gama, H.-P. Ziegler,“A multi-stage stochastic supply network design problem with financial decisions and risk management”, Omega,40(5):511-524, 2012. https://doi.org/10.1016/j.omega.2011.09.006

V. De Rosa, M. Gebhard, E. Hartmann, J. Wollenweber, “Robust sustainable bi-directional logistics network design under uncertainty”, International Journal of Production Economics 145(1): 184-198, 2013. https://doi.org/10.1016/j.ijpe.2013.04.033

S.H. Amin, G. Zhang, P. Akhtar, “Effects of uncertainty on a tire closed-loop supply chain network”, Expert Systems with Applications, 73:82-91, 2017. https://doi.org/10.1016/j.eswa.2016.12.024

N. Ayoub, R. Martins, K. Wang, H. Seki, Y. Naka, “Two levels decision system for efficient planning and implementation of bioenergy production”, Energy Conversion and Management 48(3): 709-723, 2007. https://doi.org/10.1016/j.enconman.2006.09.012

F. Oliveira, P.M. Nunes, R. Blajberg, S. Hamacher, “A framework for crude oil scheduling in an integrated terminal-refinery system under supply uncertainty”, European Journal of Operational Research, 252(2): 635-645, 2016. https://doi.org/10.1016/j.ejor.2016.01.034

S. Kumar, T. Havey, “Before and after disaster strikes: A relief supply chain decision support framework”, International Journal of Production Economics, 145(2): 613-629, 2013. https://doi.org/10.1016/j.ijpe.2013.05.016

A. Soeanu, M. Debbabi, D. Alhadidi, M. Makkawi, M. Allouche, M. Bélanger, N. Léchevin, “Transportation risk analysis using probabilistic model checking”, Expert Systems with Applications, 42(9): 4410-4421, 2015. https://doi.org/10.1016/j.eswa.2014.12.052

S. Vogel, H. Meyr, “Decentral allocation planning in multi-stage customer hierarchies”, European Journal of Operational Research, 246(2): 462-470, 2015. https://doi.org/10.1016/j.ejor.2015.05.009

P. Fiala, “Information sharing in supply chains”, Omega, 33(5): 419-423, 2005. https://doi.org/10.1016/j.omega.2004.07.006

R. Guillaume, G. Marques, C. Thierry, D. Dubois, “Decision support with ill-known criteria in the collaborative supply chain context”, Engineering Applications of Artificial Intelligence 36:1-11, 2014. https://doi.org/10.1016/j.engappai.2014.06.013

J. Gaudreault, J.-M. Frayret, G. Pesant, “Distributed search for supply chain coordination” Computers in Industry, 60(6):441-451, 2009. https://doi.org/10.1016/j.compind.2009.02.006

Ch. Van Delft, J.-P. Vial, “A practical implementation of stochastic programming: an application to the evaluation of option contracts in supply chains”, Automatica 40(5):743-756, 2004. https://doi.org/10.1016/j.automatica.2003.12.008

H. M. Wee, P. C. Yang, “The optimal and heuristic solutions of a distribution network” European Journal of Operational Research, 158(3): 626-632, 2004. https://doi.org/10.1016/s0377-2217(03)00383-7

F. Galasso, C. Thierry, “Design of cooperative processes in a customer–supplier relationship: An approach based on simulation and decision theory”, Engineering Applications of Artificial Intelligence, 22(6): 865-881, 2009. https://doi.org/10.1016/j.engappai.2008.10.008

C.H. Lee, B.-D. Rhee, T.C.E. Cheng, “Quality uncertainty and quality-compensation contract for supply chain coordination”, European Journal of Operational Research, 228(3): 582-591, 2013. https://doi.org/10.1016/j.ejor.2013.02.027

G. Zhang, J. Shang, W. Li. “Collaborative production planning of supply chain under price and demand uncertainty”, European Journal of Operational Research, 215(3): 590-603, 2011. https://doi.org/10.1016/j.ejor.2011.07.007

Y. Acar, S.N. Atadeniz, “Comparison of integrated and local planning approaches for the supply network of a globally-dispersed enterprise”, International Journal of Production Economics, 167: 204-219, 2015. https://doi.org/10.1016/j.ijpe.2015.05.028

D.P. Van Donk, T. Van der Vaart, “A case of shared resources, uncertainty and supply chain integration in the process industry”, International Journal of Production Economics, 96(1): 97-108, 2005. https://doi.org/10.1016/j.ijpe.2004.03.002

C.Y. Wong, S. Boon-itt, C.W.Y. Wong, “The contingency effects of environmental uncertainty on the relationship between supply chain integration and operational performance”, Journal of Operations Management, 29(6): 604-615, 2011. https://doi.org/10.1016/j.jom.2011.01.003

M. Adamczak, R. Domanski, L. Hadas, P. Cyplik, “The integration between production-logistics system and its task environment - chosen aspects”, IFAC-PapersOnLine, 49(12): 656-661, 2016. https://doi.org/10.1016/j.ifacol.2016.07.771

R. Yan, K.-Y. Wang, “Franchisor–franchisee supply chain cooperation: Sharing of demand forecast information in high-tech industries”, Industrial Marketing Management, 41(7): 1164-1173, 2012. https://doi.org/10.1016/j.indmarman.2012.06.013

K.N.S. Iyer, R. Germain, C. Claycomb, “B2B e-commerce supply chain integration and performance: A contingency fit perspective on the role of environment”, Information and Management, 46(6): 313-322, 2009. https://doi.org/10.1016/j.im.2009.06.002

R. Titah, S. Shuraida, Y. Rekik, “Integration breach: Investigating the effect of internal and external information sharing and coordination on firm profit”, International Journal of Production Economics, 181-A: 34-47, 2016. https://doi.org/10.1016/j.ijpe.2016.01.002

H. Lee, M.S. Kim, K.K. Kim “Interorganizational information systems visibility and supply chain performance” International Journal of Information Management 34(2): 285-295, 2014. https://doi.org/10.1016/j.ijinfomgt.2013.10.003

T.A. Chin, A.B.A. Hamid, A. Rasli, H.H. Tat “A Literature Analysis on the Relationship between External Integration, Environmental Uncertainty and Firm Performance in Malaysian SMEs” Procedia, Social and Behavioral Sciences 130:75-84, 2014. https://doi.org/10.1016/j.sbspro.2014.04.010

C.W.Y Wong, K.-H. Lai, E.W.N. Bernroider “The performance of contingencies of supply chain information integration: The roles of product and market complexity” International Journal of Production Economics 165: 1-11, 2015. https://doi.org/10.1016/j.ijpe.2015.03.005

D.J.-F. Jeng, “Generating a causal model of supply chain collaboration using the fuzzy DEMATEL technique” Computers and Industrial Engineering 87: 283-295, 2015. https://doi.org/10.1016/j.cie.2015.05.007

M.J. Matanda, S. Freeman “Effect of perceived environmental uncertainty on exporter–importer inter-organizational relationships and export performance improvement” International Business Review 18(1): 89-107, 2009. https://doi.org/10.1016/j.ibusrev.2008.12.004

R.T. Clemen, “Making Hard Decisions” Segunda Edición. Duxbury Press. EUA, 1996

Cómo citar
Chew Hernández, M. L., Viveros Rosas, L., & Velázquez Romero, V. (2019). Uso de árboles de decisión para medir el impacto de la incertidumbre operativa en el beneficio de centralizar la cadena de suministro. Redes De Ingeniería, 10(1), 13-25. https://doi.org/10.14483/2248762X.14910
Publicado: 2019-06-30
Sección
Reporte de caso