Publicado:
2021-06-25Número:
Vol. 18 Núm. 1 (2021): Revista TekhnêSección:
ArtículosPerformance evaluation of two basic controls over the Boost power regulator: PID and fuzzy controllers
Evaluación de desempeño de dos controles básicos sobre el regulador de potencia Boost: Controladores PID y difuso
Palabras clave:
Boost converter, Fuzzy control, performance evaluation, PID control (en).Palabras clave:
Control difuso, control PID, convertidor boost, evaluación de desempeño (es).Descargas
Resumen (en)
The Boost converter is a DC-to-DC step-up converter that uses the characteristics of an inductive choke and a capacitor as energy storage to boost the current of the power supply and use it to inject it into the load, producing higher voltage levels at the output. This DC transformer has nonlinear dynamics due to its switching, which makes its controller design complex. In this paper, two control schemes are designed, implemented and evaluated for this power converter, a linear PID controller and a fuzzy controller. For the first case, the frequency response of the converter is considered, while the fuzzy controller is based on the converter’s behaviour with trial-and-error tuning. The results show a better performance in the fuzzy scheme, both in steady state and against transient changes.
Resumen (es)
El convertidor elevador o tipo Boost es un convertidor DC a DC elevador de tensión que usa las características de un choque inductivo y un capacitor como almacenadores de energía para elevar la corriente de la fuente de alimentación, y usarla para inyectarla a la carga, produciendo niveles de voltaje mayores en la salida. Este transformador DC tiene una dinámica no lineal debido a su conmutación, lo que hace complejo el diseño de su controlador. En este artículo se diseñan, implementan y evalúan dos esquemas de control para este convertidor de potencia, un controlador PID lineal y un controlador difuso. Para el primer caso se considera la respuesta en frecuencia del convertidor, mientras que el controlador difuso se soporta en el comportamiento del convertidor con sintonización por ensayo y error. Los resultados muestran un mejor desempeño en el esquema difuso, tanto en estado estacionario como frente a cambios transitorios.
Referencias
Almaged, M., Khather, S. I., & Abdulla, A. I. (2019). Design of a discrete PID controller based on identification data for a simscape buck boost converter model. International Journal of Power Electronics and Drive Systems (IJPEDS), 10(4), 1797–1805. https://doi.org/10.11591/ijpeds.v10.i4.pp1797-1805
Almasi, O. N., Fereshtehpoor, V., Khooban, M. H., & Blaabjerg, F. (2017). Analysis, control and design of a non-inverting buck-boost converter: A bump-less two-level t–s fuzzy PI control. ISA Transactions, 67(2017), 515–527. https://doi.org/10.1016/j.isatra.2016.11.009
Amirparast, A., & Gholizade-Narm, H. (2020). Nonlinear robust-optimal control of boost converter in photovoltaic applications. Advanced Control for Applications, 2(4), e53. https://doi.org/10.1002/adc2.53
Aseem, K., & Selva, K. (2020). Closed loop control of DC-DC converters using PID and FOPID controllers. International Journal of Power Electronics and Drive Systems (IJPEDS), 11(3), 1323–1332. https://doi.org/10.11591/ijpeds.v11.i3.pp1323-1332
Bennaoui, A., & Saadi, S. (2016). Type-2 fuzzy logic PID controller and different uncertainties design for boost DC–DC converters. Electrical Engineering, 99(1), 203–211. https://doi.org/10.1007/s00202-016-0412-3
Bennaoui, A., Saadi, S., & Ameur, A. (2020). Invasive weed optimization algorithm for tuning transitioning from type-1 to interval type-2 fuzzy logic controller for boost DC-DC converters. Journal Européen des Systèmes Automatisés, 53(2), 195–202. https://doi.org/10.18280/jesa.530205
Bharathi, M., & Kirubakaran, D. (2016). Solar powered closed-loop controlled fuzzy logic-based three-stage interleaved DC-DC boost converter with an inverter. International Journal of Advanced Intelligence Paradigms, 8(2), 140–155. https://doi.org/10.1504/ijaip.2016.075723
Chakravarthi, B. N. C. V., & Rao, G. V. S. K. (2020). Optimal real power penetration to solar PV-fed double boost integrated multilevel converter with improved power quality. Journal of Circuits, Systems and Computers, 29(16), 2050256. https://doi.org/10.1142/s0218126620502564
Farhani, S., N’Diaye, A., Djerdir, A., & Bacha, F. (2020). Design and practical study of three phase interleaved boost converter for fuel cell electric vehicle. Journal of Power Sources, 479(2020), 228815. https://doi.org/10.1016/j.jpowsour.2020.228815
Ganjavi, A., Gholinejad, H. R., Mehrasa, M., Ghoreishy, H., & Ahmad, A. A. (2020). Feedback–feedforward control technique with a comprehensive mathematical analysis for single-input dual-output three-level dc–dc converter. IET Power Electronics, 13(19), 4685–4694. https://doi.org/10.1049/iet-pel.2020.0811
Gavagsaz-Ghoachani, R., Phattanasak, M., Martin, J.-P., & Pierfederici, S. (2020). Lyapunov function-based improved switching command for a boost converter with an inductor–capacitor input filter. IET Power Electronics, 13(17), 3940–3953. https://doi.org/10.1049/iet-pel.2020.0836
Hasanpour, S., Siwakoti, Y., & Blaabjerg, F. (2020). New single-switch quadratic boost DC/DC converter with low voltage stress for renewable energy applications. IET Power Electronics, 13(19), 4592–4600. https://doi.org/10.1049/iet-pel.2020.0580
Ibrahim, O., Yahaya, N. Z. B., & Saad, N. (2016). PID controller response to set-point change in DC-DC converter control. International Journal of Power Electronics and Drive Systems (IJPEDS), 7(2), 294–302. https:// doi.org/ 10.11591/ ijpeds.v7.i2.pp294-302
Kamaraj, P., Thamizharasu, T., & Vishnupriya, M. (2020). Voltage regulation of soft switched interleaved boost converter using fuzzy proportional integral controller. Journal of Energy Systems, 4(4), 145–160. https://doi.org/10.30521/jes.762506
Magossi, R. F., Han, S., Machado, R. Q., Oliveira, V. A., & Bhattacharyya, S. P. (2020). Geometric-based PID control design with selective harmonic mitigation for DC–DC converters by imposing a norm bound on the sensitivity function. IET Control Theory & Applications, 14(19), 3330–3337. https://doi.org/10.1049/iet-cta.2020.0768
Martínez, F., & Gómez, D. Fuzzy logic controller for boost converter with active power factor correction. In: In 7th international conference on power electronics (icpe 2007). 2007, 936–940.
Paragond, L., Kurian, C., Singh, B., & Aswanth, V. (2016). Simulation and implementation of perturb and observe fuzzy based dc-dc converter in pv-battery hybrid system. International Journal of Applied Engineering Research, 11(6), 3761–3767.
Prasadarao, K., Yarra, M., & Maddi, S. (2017). Comparative analysis of fuzzy and pi controller based two switch buck-boost converter for power factor correction. International Journal of Applied Engineering Research, 12(1), 294–301.
Prasadarao, K. V. S., Krishnarao, K. V., & Tej, T. S. (2016). Fuzzy logic control of a single stage boost inverter for grid connected PV systems. Indian Journal of Science and Technology, 9(38), 89970. https://doi.org/10.17485/ijst/2016/v9i38/89970
Prithivi, K., Sathyapriya, M., & Ashok, L. (2017). An optimized dc-dc converter for electric vehicle application. International Journal of Mechanical Engineering and Technology, 8(9), 173–182.
Rezaie, M., Abbasi, V., & Kerekes, T. (2020). High step-up DC–DC converter composed of quadratic boost converter and switched capacitor. IET Power Electronics, 13(17), 4008–4018. https://doi.org/10.1049/iet-pel.2020.0044
Rose, J. L., & Sankaragomathi, B. (2018). Comparison of buck–boost and ćuk converters based on time domain response. Journal of Circuits, Systems and Computers, 27(14), 1850222. https://doi.org/10.1142/s0218126618502225
Sadighi, H. G., Afjei, S. E., & Salemnia, A. (2020). High step-up DC–DC converter based on coupled-inductor for renewable energy systems. IET Power Electronics, 13(18), 4315–4324. https://doi.org/10.1049/iet-pel.2020.0310
Shayeghi, H., Pourjafar, S., Maalandish, M., & Nouri, S. (2020). Non-isolated DC–DC converter with a high-voltage conversion ratio. IET Power Electronics, 13(16), 3797–3806. https://doi.org/10.1049/iet-pel.2019.1014
Shieh, C. (2018). An fpga-based sliding fuzzy control for dc/dc boost converter. ICIC Express Letters, 12(2), 167–174. https://doi.org/10.24507/icicel.12.02.167
Zhao, D., Li, H., Liang, Z., Ma, R., & Huangfu, Y. (2020). Continuous model predictive control of interleaved boost converter with current compensation. IET Power Electronics, 13(17), 4079–4088. https://doi.org/10.1049/iet-pel.2019.1493
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Visitas
Descargas
Licencia
Derechos de autor 2021 Jaidev Khanna
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada.