Publicado:

2022-12-30

Número:

Vol. 19 Núm. 2 (2022): Revista Tekhnê

Sección:

Artículos

Visual inspection of transmission tower insulators

Inspección visual de aisladores para torres de transmisión

Autores/as

  • Camila A. Cartagena B. Universidad Distrital Francisco José de Caldas
  • John E. Martín L. Universidad Distrital Francisco José de Caldas

Palabras clave:

Artificial intelligence, drone, electricity, isolators, transmission tower (en).

Palabras clave:

Aisladores, dron, electricidad, inteligencia artificial, torre de transmisión (es).

Resumen (en)

One of the most important processes in the maintenance of electrical networks is the detection of faults in the insulators of transmission towers. These prevent an unexpected voltage drop at a point on the line. Therefore, it is necessary to maintain and supervise them in time so that they do not act inefficiently. There are systems to facilitate, streamline, and classify the detection of faults without putting anyone at risk, since the maintenance of electrical systems is one of the most risky and thus requires a quick solution. In this article, a methodology was implemented that facilitates the location of faults in the insulator system by means of an image that is captured by a drone and sent to the database to be analyzed by the code, detecting the possible fault.

Resumen (es)

Uno de los procesos más importantes en el mantenimiento de redes eléctricas es la detección de fallas en los aisladores de las torres de transmisión. Estos evitan que exista una caída de tensión no esperada en un punto de la línea. Por ello, es necesario el mantenimiento y supervisión a tiempo para que no actúe de manera ineficiente. Existen sistemas para facilitar, agilizar y clasificar la detección de fallas sin poner en riesgo ninguna persona, ya que el mantenimiento de los sistemas eléctricos son uno de los más riesgosos y así buscando una rápida solución. En este artículo se implementó una metodología que facilita la ubicación de fallas en el sistema de aisladores por medio de una imagen que es capturada por un dron, enviada a la base de datos para ser analizada por el código, detectando la posible falla.

Referencias

Belitsyn, I. V., Pestov, M. I., Pavlichenko, I. A., & Belitsyn, A. I. (2021). Fault simulation in networks with isolated neutral to find the fault location in power transmission lines. Journal of Physics: Conference Series, 2131(3), 032045. https://doi.org/10.1088/1742-6596/2131/3/032045

Cadena, A., Peña, E., & Martínez, F. (2016). Desarrollo de prototipo de quadrotor con sistema de comunicación inalámbrica bidireccional. Tekhnê, 13(1), 13–30.

Gao, Q., liu, S., Yang, Y., & Zhang, C. (2019). Study on the influence of insulator on the coupling effect of transmission tower-line system. Journal of Physics: Conference Series, 1187(2), 022030. https://doi.org/10.1088/1742-6596/1187/2/022030

Guo, L., Liao, Y., Yao, H., Chen, J., & Wang, M. (2018). An electrical insulator defects detection method combined human receptive field model. Journal of Control Science and Engineering, 2018(1), 1–9. https://doi.org/10.1155/2018/2371825

Khanna, J. (2021). Performance evaluation of two basic controls over the boost powerregulator: Pid and fuzzy controllers. Tekhnê, 18(1), 37–49.

López, R., Batista, M., & Jimenez, M. (2021). Autonomous uav system for cleaning insulators in power line inspection and maintenance. Vol. 21(8488), 10–50. https://doi.org/10.3390/s21248488

Martínez, F., Martínez, F., & Montiel, H. (2020). Low cost, high performance fuel cell energy conditioning system controlled by neural network. TELKOMNIKA (Telecommunication Computing Electronics and Control), 18(6), 3116–3122.

Martíez, F., Martínez, F., & Jacinto, E. (2017). Visual identification and similarity measures used for on-line motion planning of autonomous robots in unknown environments. In Y. Wang, T. D. Pham, V. Vozenilek, D. Zhang, & Y. Xie (Eds.), Eighth international conference on graphic and image processing (ICGIP 2016). SPIE. https://doi.org/10.1117/12.2266997

Mohana, K., Hussain, A., Kavya, B., J., B., & Kaliappan. (2021). Deep learning for fault diagnostics in bearings, insulators, pv panels, power lines, and electric vehicle applications—the state-of-the-art approaches. IEEE, Vol.9(20657183), 41246–41260. https://doi.org/10.1109/ACCESS.2021.3064360

Montiel, H., Jacinto, E., & Martínez, F. (2021). A double-loop hybrid approach for the recognition of fissures in bone structures. ARPN Journal of Engineering and Applied Sciences, 16(11), 1151–1156.

Ochoa, Y., & Penagos, C. (2021). Traveling wave method for analysis of faults in a high voltagetransmission line. Tekhnê, 18(2), 13–18.

Odo, A., McKenna, S., Flynn, D., & Vorstius, J. B. (2021). Aerial image analysis using deep learning for electrical overhead line network asset management. IEEE Access, 9(2021), 146281–146295. https://doi.org/10.1109/access.2021.3123158

Rodríguez, A., & Buitrago, X. (2022). How to choose an activation function for deep learning. Tekhnê, 19(1), 23–32.

Romero, D., Sánchez, B., & Garzón, N. (2019). Conserving water is conserving your life. Tekhnê, 16(1), 23–34.

Sampedro, C., Rodriguez-Vazquez, J., Rodriguez-Ramos, A., Carrio, A., & Campoy, P. (2019). Deep learning-based system for automatic recognition and diagnosis of electrical insulator strings. IEEE, Vol. 7(18880601), 101283–101308. https://doi.org/10.1109/ACCESS.2019.2931144

Sopelsa, N., Frizzo, S., & Meyer, L. (2021). A study of multilayer perceptron networks applied to classification of ceramic insulators using ultrasound. Vol. 11(1592), 50–150. https://doi.org/10.3390/app11041592

Yin, F., Liu, P., Mei, H., Wang, L., Li, L., & Farzaneh, M. (2020). The shed hole influence on the electrical performance of composite insulator. IEEE, Vol. 8(20184521), 217447–217455. https://doi.org/10.1109/ACCESS.2020.3042245

Cómo citar

APA

Cartagena B., C. A., y Martín L., J. E. (2022). Visual inspection of transmission tower insulators. Tekhnê, 19(2), 13–22. https://revistas.udistrital.edu.co/index.php/tekhne/article/view/20348

ACM

[1]
Cartagena B., C.A. y Martín L., J.E. 2022. Visual inspection of transmission tower insulators. Tekhnê. 19, 2 (dic. 2022), 13–22.

ACS

(1)
Cartagena B., C. A.; Martín L., J. E. Visual inspection of transmission tower insulators. Tekhnê 2022, 19, 13-22.

ABNT

CARTAGENA B., Camila A.; MARTÍN L., John E. Visual inspection of transmission tower insulators. Tekhnê, [S. l.], v. 19, n. 2, p. 13–22, 2022. Disponível em: https://revistas.udistrital.edu.co/index.php/tekhne/article/view/20348. Acesso em: 5 nov. 2024.

Chicago

Cartagena B., Camila A., y John E. Martín L. 2022. «Visual inspection of transmission tower insulators». Tekhnê 19 (2):13-22. https://revistas.udistrital.edu.co/index.php/tekhne/article/view/20348.

Harvard

Cartagena B., C. A. y Martín L., J. E. (2022) «Visual inspection of transmission tower insulators», Tekhnê, 19(2), pp. 13–22. Disponible en: https://revistas.udistrital.edu.co/index.php/tekhne/article/view/20348 (Accedido: 5 noviembre 2024).

IEEE

[1]
C. A. Cartagena B. y J. E. Martín L., «Visual inspection of transmission tower insulators», Tekhnê, vol. 19, n.º 2, pp. 13–22, dic. 2022.

MLA

Cartagena B., Camila A., y John E. Martín L. «Visual inspection of transmission tower insulators». Tekhnê, vol. 19, n.º 2, diciembre de 2022, pp. 13-22, https://revistas.udistrital.edu.co/index.php/tekhne/article/view/20348.

Turabian

Cartagena B., Camila A., y John E. Martín L. «Visual inspection of transmission tower insulators». Tekhnê 19, no. 2 (diciembre 30, 2022): 13–22. Accedido noviembre 5, 2024. https://revistas.udistrital.edu.co/index.php/tekhne/article/view/20348.

Vancouver

1.
Cartagena B. CA, Martín L. JE. Visual inspection of transmission tower insulators. Tekhnê [Internet]. 30 de diciembre de 2022 [citado 5 de noviembre de 2024];19(2):13-22. Disponible en: https://revistas.udistrital.edu.co/index.php/tekhne/article/view/20348

Descargar cita

Visitas

114

Descargas

Los datos de descargas todavía no están disponibles.
Loading...