Spatial and geographic analysis of eolic potential in colombia

Palabras clave: Wind energy, Geographic analysis, Energetic potential, Wind speed, Wind density, Geographic information system (SIG). (es_ES)

Resumen (es_ES)

The following study focuses on a spatial analysis of the Colombian territory with Geographic Information Systems (GIS) tools, determining probabilistically the key points with the highest wind energy potential, using a fitted probability distribution function (PBDF), this information was captured along 10 years, by meteorological stations of the Institute of Hydrology, Meteorology and Environmental Studies (IDEAM), installed in a large part of the country. The wind velocity and density data were used to generate the cartography records for the identification of the areas of the country with the most wind  potential, locating the areas of the country with high energy potential such as the region of La Guajira and Nudo de Los Pastos. This study provides an estimation of the wind energy capacity of Colombia, arriving to the conclusion that due to its geographical characteristics the country could be able to satisfy its energy demand with the use of wind turbines.



La descarga de datos todavía no está disponible.


Albadan Molano, D. E., & Salamanca Céspedes, J. E. (2019). Diseño de hélices eólicas para aerogenerador de eje horizontal: modelo 3D. Visión electrónica, 13(1), 135-143.

Albadan-Molano, D., Salamanca-Céspedes, J., & Gallego-Torres, A. (2018). Desing of wind propellers for horizontal axis. Revista Facultad de Ingeniería, 27(47), 119-124.

Bhattacharya, M., Paramati, S. R., Ozturk, I., & Bhattacharya, S. (2016). The effect of renewable energy consumption on economic growth: Evidence from top 38 countries. Applied Energy, 162, 733-741.

Boumassata, A., & Abderraouf, D. (2014). Modeling, Simulation and Control of Wind Energy Conversion System based on Doubly Fed Induction Generator and cycloconverter. Advances in Electrical and Computer Engineering. 14. 43-48.

Carrillo, C., Cidrás, J., Díaz, E., & Obando, A. (2014). An Approach to Determine the Weibull Parameters for Wind Energy Analysis: The Case of Galicia (Spain), Energies journal.

Hernández, R. A. C., Ortiz, L. A. Q., Pinilla, C. A. G., & García, J. E. (2015). Evaluación de técnicas no destructivas en elementos de concreto para puentes. Revista Facultad de Ingeniería, 24(40), 83-94.

McCarthy, J., & Thatcher, J. (2019). Visualizing new political ecologies: a critical data studies analysis of the World Bank’s renewable energy resource mapping initiative.Rev Geoforum. 242-254.

Norton Rose Fulbright. (2017). Department of Physics Stanford University, Stanford. Obtained from Prof. Robert B. Laughlin: Course PH240 Renewable energy in Latin America, 19-21.

Pinilla, E. (2017). The Future of Renewable Energy in Colombia. Obtained from Submitted as coursework for PH240, Stanford University, Fall 2017, taken by:

Salamanca-Ávila, Sebastián. (2017). Propuesta de diseño de un sistema de energía solar fotovoltaica. Caso de aplicación en la ciudad de Bogotá. Revista científica, (30), 263-277.

United Nations. (2016). United Nations: Industrial Development Organization. World Small Hydropower Development Report 2016: Colombia.

Ley 1715 de 2014 República de Colombia.

Okulov, Valery & N Sorensen, J & Kuik, Gijs. (2013). Development of the optimum rotor theories; On the 100 th Anniversary of Professor Joukowsky's vortex theory of screw propeller.

Weibull, W. (1951). A statistical distribution function of wide applicability. ASME Journal of Applied Mechanics, 18(3). 239–297.

Cómo citar
Albadan Molano, D. E., Salas Pérez, C., & Coy Castro, D. F. (2019). Spatial and geographic analysis of eolic potential in colombia. Noria Investigación Educativa , 2(4), 79-89. Recuperado a partir de
Publicado: 2019-07-31
Investigación e Innovación