DOI:
https://doi.org/10.14483/22487638.9245Publicado:
2014-12-01Número:
Vol. 18 (2014): Special Edition DoctorateSección:
InvestigaciónPotential application of ivim and dwi imaging in parkinson’s disease
Palabras clave:
Parkinson's disease (PD), Intravoxel incoherent motion (IVIM), Diffusion Weighted Imaging (DWI), Substantia nigra (SN). (en).Palabras clave:
Diffusion Weighted Imaging (DWI), Intravoxel incoherent motion (IVIM), , Parkinson’s disease (PD), Substantia nigra (SN). (es).Descargas
Resumen (en)
Parkinson’s disease (PD) is a progressive degenerative neurological condition, which origin remains unclear. We are interested in proposing the study of
blood flow in the substantia nigra (SN) in PD patients, based on findings that demonstrated relative hypoactivity in PD patients located to subthalamic
nucleus and SN. It is believed that this hipoactivity may suggest changes in the blood flow to the SN, where the particular loss of dopaminergic neurons
occurs.
The method used is the Incoherent Motion Intravoxel (IVIM) that allows measurement of blood flow to the microvascular level and recently has been producing high resolution quantitative perfusion maps.
This paper proposes to measure the perfusion in PD patients and find any correlation with neural activity and water displacements within the
tissue. Assuming decreasing the local perfusion suggests the possible impairments that affect the neural activity in PD causing the progressive
death of neurons in the SN.
Referencias
Barcia, C., Bautista, V., Sánchez-Bahillo, Á., Fernández-Villalba, E., Faucheux, B., Poza Y Poza, M., … Herrero, M. T. (2005). Changes in vascularization in substantia nigra pars compacta of monkeys rendered parkinsonian. Journal of Neural Transmission, 112, 1237–1248. doi:10.1007/s00702-004-0256-2
Braak, H., Rüb, U., Gai, W., & Del Tredici, K. (2003). Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transmission, 110(5), 517–36.
Brazzini, A., Cantella, R., De la Cruz, A., Yupanqui, J., León, C., Jorquiera, T., … Saenz, L. N. (2010). Intraarterial autologous implantation of adult stem cells for patients with Parkinson disease. Journal of Vascular and Interventional Radiology : JVIR, 21(4), 443–51. doi:10.1016/j.jvir.2010.01.008
Calamante, F., Thomas, D. L., Pell, G. S., Wiersma, J., & Turner, R. (1999). Measuring cerebral blood flow using magnetic resonance imaging techniques. Journal of Cerebral Blood Flow and Metabolism : Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 19, 701–735. doi:10.1097/00004647-199907000-00001
Cipolla, M. (2009). The Cerebral Circulation. In S. R. (CA): M. & C. L. Sciences (Ed.), The Cerebral Circulation.
Cruz, G., Li, Q., Xu, L., & Zhang, W. (2010). Differentiation of diffusion coefficients to distinguish malignant and benign tumor. Journal of X-Ray Science and Technology, 18(3), 235–49. doi:10.3233/XST-2010-0257
De la Torre, J. C. (1994). Impaired brain microcirculation may trigger Alzheimer’s disease. Neuroscience and Biobehavioral Reviews. doi:10.1016/0149-7634(94)90052-3
Du, G., Lewis, M., Styner, M., Shaffer, M., Sen, S., Yang, Q., & Huang, X. (2011). Combined R2* and diffusion tensor imaging changes in the substantia nigra in Parkinson’s disease. Movement Disorders, 26(9), 1627–1632.
Fearnley, J., & Lees, A. (1991). Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain, 114, 2283–2301.
Federau, C., Eth, D. P., Maeder, P., Brien, K. O., & Browaeys, P. (2012). Quantitative Measurement of Brain Perfusion with Intravoxel, 265(3).
German, D., Manaye, K., Smith, W., Woodward, D., & Saper, C. (1989). Midbrain dopaminergic cell loss in Parkinson’s disease: computer visualization. Ann Neurol, 26(4), 507–14.
Halliday, G., Li, Y., Joh, T., Cotton, R., Howe, P., Geffen, L., & Blessing, W. (1988). Distribution of monoamine-synthesizing neurons in the human medulla oblongata. J Comp Neurol, 273(3), 301–17.
Hasan, K. M., Walimuni, I. S., Abid, H., & Hahn, K. R. (2011). A review of diffusion tensor magnetic resonance imaging computational methods and software tools. Computers in Biology and Medicine, 41(12), 1062–72. doi:10.1016/j.compbiomed.2010.10.008
Hassler, R. (1938). [Zur Pathologie der Paralysis agitans und des Postenzephalitischen Parkinsonismus]. J Psychol Neurol, 48, 387–476 [in German].
Hirsch, E. (2009). Iron transport in Parkinson’s disease. Parkinsonism & Related Disorders, 15 Suppl 3, S209–11. doi:10.1016/S1353-8020(09)70816-8
Hirsch, E., & Faucheux, B. (1998). Iron metabolism and Parkinson’s disease. Mov Disord, 13(1), 39–45.
Hirsch, E., Graybiel, A., & Agid, Y. (1988). Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature, 334(6180), 345–8.
Ide, H., Kobayashi, H., Handa, Y., Kubota, T., Maeda, M., Itoh, S., & Ishii, Y. (1993). Correlation between somatosensory-evoked potentials and magnetic resonance imaging of focal cerebral ischemia in cats. Surgical Neurology, 40, 216–223. doi:10.1016/0090-3019(93)90070-H
Issidorides, M. R. (1971). Neuronal vascular relationships in the zona compacta of normal and parkinsonian substantia nigra. Brain Research, 25(2), 289–299. doi:10.1016/0006-8993(71)90439-2
Jellinger, K. (1986). Overview of morphological changes in Parkinson’s disease. Adv. Neurol, 45(1-18.).
Kitagawa, K., Matsumoto, M., Oda, T., Niinobe, M., Hata, R., Handa, N., … Kamada, T. (1990). Free radical generation during brief period of cerebral ischemia may trigger delayed neuronal death. Neuroscience, 35(3), 551–558. doi:10.1016/0306-4522(90)90328-2
Knox, H., & Finley, M. D. (1936). ANGIO-ARCHITECTURE OF THE SUBSTANTIA NIGRA AND ITS PATHOGENIC SIGNIFICANCE. Arch NeurPsych, 36(1), 118–127.
Kohno, S., Sawamoto, N., Urayama, S., Aso, T., Aso, K., Seiyama, A., … Le Bihan, D. (2009). Water-diffusion slowdown in the human visual cortex upon visual stimulation precedes vascular responses. Neuroscience Research, 65, S131. doi:10.1016/j.neures.2009.09.634
Köllensperger, M., Seppi, K., Liener, C., & Al, E. (2007). Diffusion weighted imaging best discriminates PD from MSA-P: A comparison with tilt table testing and heart MIBG scintigraphy. Mov Disord, 22(12), 1771–1776.
Le Bihan, D. (2012). Diffusion, confusion and functional MRI. NeuroImage, 62(2), 1131–6. doi:10.1016/j.neuroimage.2011.09.058
LeBihan D, & Turner R. (1992). The capillary network: a link between IVIM and classical perfusion. Magnetic Resonance in Medicine : Official Journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine, 27(1), 171–8. Retrieved from http://www.ncbi.nlm.nih.gov/pubmed/1435202
LeBihan, D. (2008). Intravoxel Incoherent Motion Perfusion MR Imaging: A Wake-Up Call. Radiology, 249(3), 748–752.
LeBihan, D., Breton, E., Lallemand, D., Aubin, M. L., Vignaud, J., & Laval-Jeantet, M. (1988). Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology, 168, 497–505. doi:10.1148/radiology.168.2.3393671
LeBihan, D., Breton, E., Lallemand, D., Grenier, P., Cabanis, E., & Laval-Jeantet, M. (1986). MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology, 161(2), 401–7.
LeBihan, D., Moonen, C., van Zijl, P., Pekar, J., & DesPres, D. (1991). Measuring random microscopic motion of water in tissues with MR imaging: a cat brain study. J Comput Assist Tomogr, 15(1), 19–25.
LeBihan, D., & Turner, R. (1992). The capillary network: a link between IVIM and classical perfusion. Magnetic Resonance in Medicine : Official Journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine, 27(1), 171–8.
Malonek, D., Dirnagl, U., Lindauer, U., Yamada, K., Kanno, I., & Grinvald, and A. (1997). Vascular imprints of neuronal activity : Relationships between the dynamics of cortical blood flow , oxygenation , and volume changes. Proceedings of the National Academy of Sciences, 94(December), 14826–14831.
Massey, L., & Yousry, T. (2010). Anatomy of the substantia nigra and subthalamic nucleus on MR imaging. Neuroimaging Clinics of North America, 20(1), 7–27. doi:10.1016/j.nic.2009.10.001
Meijer, F. J., Bloem, B. R., Mahlknecht, P., Seppi, K., & Goraj, B. (2013). Update on diffusion MRI in Parkinson’s disease and atypical parkinsonism. Journal of the Neurological Sciences, 332(1-2), 21–9. doi:10.1016/j.jns.2013.06.032
Mori, S., & Zhang, J. (2006). Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron (Vol. 51, pp. 527–39).
Nicoletti, G., Fera, F., Condino, F., Auteri, W., & Gallo, O. (2006). Imaging of Middle Cerebellar Peduncle Width : Differentiation of Multiple System Atrophy from Purpose : Methods : Results : Conclusion : Radiology, 239(3), 825–830.
Ogawa, S., Lee, T. M., Nayak, A. S., & Glynn, P. (1990). Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magnetic Resonance in Medicine, 14, 68–78. doi:10.1002/mrm.1910140108
Ogawa, S., Menon, R. S., Tank, D. W., Kim, S. G., Merkle, H., Ellermann, J. M., & Ugurbil, K. (1993). Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophysical Journal, 64, 803–812. doi:10.1016/S0006-3495(93)81441-3
Ohtsuka, C., Sasaki, M., Konno, K., Koide, M., Kato, K., Takahashi, J., … Terayama, Y. (2013). Changes in substantia nigra and locus coeruleus in patients with early-stage Parkinson’s disease using neuromelanin-sensitive MR imaging. Neuroscience Letters, 541, 93–8. doi:10.1016/j.neulet.2013.02.012
Parent, A., & Hazrati, L.-N. (1995). Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidium in basal ganglia circuitry. Brain Research Reviews, 20(1), 128–154. doi:10.1016/0165-0173(94)00008-D
Péran, P., Cherubini, A., Assogna, F., & Al., E. (2010). Magnetic resonance imaging markers of Parkinson’s disease nigrostriatal signature. Brain, 133, 3423–3433.
Prodoehl, J., Spraker, M., Corcos, D., Comella, C., & Vaillancourt, D. (2010). Blood oxygenation level–dependent activation in basal ganglia nuclei relates to specific symptoms in de novo Parkinson’s disease. Mov. Disord, 25(13), 2035–2043. doi:10.1002/mds.23360.Blood
Raichle, M., Grubb, R. J., Gado, M., Eichling, J., & Ter-Pogossian, M. (1976). Correlation between regional cerebral blood flow and oxidative metabolism. In vivo studies in man. Arch Neurol, 33(8), 523–6.
Roy, C. S., & Sherrington, C. S. (1890). On the Regulation of the Blood-supply of the Brain. The Journal of Physiology, 11, 85–158.17. doi:10.1152/japplphysiol.00257.2010
Sasaki, T., Takemori, H., Yagita, Y., Terasaki, Y., Uebi, T., Horike, N., … Kitagawa, K. (2011). SIK2 Is a Key Regulator for Neuronal Survival after Ischemia via TORC1-CREB. Neuron, 69, 106–119. doi:10.1016/j.neuron.2010.12.004
Scheibel, A. B., & Tomiyasu, U. (1980). A dendritic-vascular relationship in the substantia nigra. Experimental Neurology, 70(3), 717–720. doi:10.1016/0014-4886(80)90198-3
Seppi, K., Schocke, M. F. H., Mair, K. J., Esterhammer, R., Scherfler, C., Geser, F., … Wenning, G. K. (2006). Progression of putaminal degeneration in multiple system atrophy: a serial diffusion MR study. NeuroImage, 31(1), 240–5. doi:10.1016/j.neuroimage.2005.12.006
Spraker, M. B., Prodoehl, J., Corcos, D. M., Comella, C. L., & Vaillancourt, D. E. (2010). Basal ganglia hypoactivity during grip force in drug naïve Parkinson’s disease. Human Brain Mapping, 31(12), 1928–41. doi:10.1002/hbm.20987
Tirosh, N., & Nevo, U. (2013). Neuronal activity significantly reduces water displacement: DWI of a vital rat spinal cord with no hemodynamic effect. NeuroImage, 76, 98–107. doi:10.1016/j.neuroimage.2013.02.065
Turner, R. (2002). How Much Cortex Can a Vein Drain? Downstream Dilution of Activation-Related Cerebral Blood Oxygenation Changes. NeuroImage, 16(4), 1062–1067. doi:10.1006/nimg.2002.1082
Vaillancourt, D., Spraker, M., Prodoehl, J., Abraham, I., Corcos, D., Zhou, X., … Little, D. (2009). High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease. Neurology, 72(16), 1378–84.
Yoshikawa, K. (2004). Early pathological changes in the parkinsonian brain demonstrated by diffusion tensor MRI. Journal of Neurology, Neurosurgery & Psychiatry, 75(3), 481–484. doi:10.1136/jnnp.2003.021873
Zweig, R., Cardillo, J., Cohen, M., Giere, S., & Hedreen, J. (1993). The locus ceruleus and dementia in Parkinson’s disease. Neurology, 43(5), 986–91.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Esta licencia permite a otros remezclar, adaptar y desarrollar su trabajo incluso con fines comerciales, siempre que le den crédito y concedan licencias para sus nuevas creaciones bajo los mismos términos. Esta licencia a menudo se compara con las licencias de software libre y de código abierto “copyleft”. Todos los trabajos nuevos basados en el tuyo tendrán la misma licencia, por lo que cualquier derivado también permitirá el uso comercial. Esta es la licencia utilizada por Wikipedia y se recomienda para materiales que se beneficiarían al incorporar contenido de Wikipedia y proyectos con licencias similares.