Vol. 18 (2014): Special Edition Doctorate



Potential application of ivim and dwi imaging in parkinson’s disease


  • Gloria Cruz Universidad Antonio Nariño
  • Shengdong Nie University China
  • Lijia Wang University China

Palabras clave:

Parkinson's disease (PD), Intravoxel incoherent motion (IVIM), Diffusion Weighted Imaging (DWI), Substantia nigra (SN). (en).

Palabras clave:

Diffusion Weighted Imaging (DWI), Intravoxel incoherent motion (IVIM), , Parkinson’s disease (PD), Substantia nigra (SN). (es).


Resumen (en)

Parkinson’s disease (PD) is a progressive degenerative neurological condition, which origin remains unclear. We are interested in proposing the study of
blood flow in the substantia nigra (SN) in PD patients, based on findings that demonstrated relative hypoactivity in PD patients located to subthalamic
nucleus and SN. It is believed that this hipoactivity may suggest changes in the blood flow to the SN, where the particular loss of dopaminergic neurons

The method used is the Incoherent Motion Intravoxel (IVIM) that allows measurement of blood flow to the microvascular level and recently has been producing high resolution quantitative perfusion maps.
This paper proposes to measure the perfusion in PD patients and find any correlation with neural activity and water displacements within the
tissue. Assuming decreasing the local perfusion suggests the possible impairments that affect the neural activity in PD causing the progressive
death of neurons in the SN.

Biografía del autor/a

Gloria Cruz, Universidad Antonio Nariño

MSc. Received her B.A degree in Biomedical Engineering at Universidad Antonio Nariño, Colombia, in 2000, the MSc. degree in Biomedical Engineer at The Beijing Institute of Technology, China, in 2010. She is currently a Senior Research Lecturer in Neuroscience and Neurocomputing
and pursuing his PhD. degree within The University of Shanghai for Science and Technology. Her current researches interesting include Diffusion Tensor Imaging, Diffusion Weight Imaging, Perfusion Imaging, cancer and neuronal degenerative diseases.

Shengdong Nie, University China

PhD. Received his Bachelor degree in Mathematics and Control Theory from Shandong University, China, in 1984. He was an assistant engineer in Ministry of Defense for Simulation System Laboratory and Department of Radiology at the Computer Medical College, during
1984-1990. He received his Master’s degree in Automation Engineering from Electrical Shandong University of Science and Technology. He received his PhD degree in Biomedical Engineering from Jiaotong University, China, in 2000. He is now associate Professor and leader inUniversity of Shanghai for Science and Technology at the Institute Medical Imaging Engineering.

Lijia Wang, University China

PhD. She was born in 1984. She accepted her physics PhD degree from East China Normal University, China, on July, 2014. Her project is mainly focused on MRI techniques mainly including fully automated segmentation of cine cardiac MRI images. She also worked on fMRI
study of visual illusory motion. Four paper and 7 patents have been published. Now she is working on MRI Pulse sequence design.


Barcia, C., Bautista, V., Sánchez-Bahillo, Á., Fernández-Villalba, E., Faucheux, B., Poza Y Poza, M., … Herrero, M. T. (2005). Changes in vascularization in substantia nigra pars compacta of monkeys rendered parkinsonian. Journal of Neural Transmission, 112, 1237–1248. doi:10.1007/s00702-004-0256-2

Braak, H., Rüb, U., Gai, W., & Del Tredici, K. (2003). Idiopathic Parkinson’s disease: possible routes by which vulnerable neuronal types may be subject to neuroinvasion by an unknown pathogen. J Neural Transmission, 110(5), 517–36.

Brazzini, A., Cantella, R., De la Cruz, A., Yupanqui, J., León, C., Jorquiera, T., … Saenz, L. N. (2010). Intraarterial autologous implantation of adult stem cells for patients with Parkinson disease. Journal of Vascular and Interventional Radiology : JVIR, 21(4), 443–51. doi:10.1016/j.jvir.2010.01.008

Calamante, F., Thomas, D. L., Pell, G. S., Wiersma, J., & Turner, R. (1999). Measuring cerebral blood flow using magnetic resonance imaging techniques. Journal of Cerebral Blood Flow and Metabolism : Official Journal of the International Society of Cerebral Blood Flow and Metabolism, 19, 701–735. doi:10.1097/00004647-199907000-00001

Cipolla, M. (2009). The Cerebral Circulation. In S. R. (CA): M. & C. L. Sciences (Ed.), The Cerebral Circulation.

Cruz, G., Li, Q., Xu, L., & Zhang, W. (2010). Differentiation of diffusion coefficients to distinguish malignant and benign tumor. Journal of X-Ray Science and Technology, 18(3), 235–49. doi:10.3233/XST-2010-0257

De la Torre, J. C. (1994). Impaired brain microcirculation may trigger Alzheimer’s disease. Neuroscience and Biobehavioral Reviews. doi:10.1016/0149-7634(94)90052-3

Du, G., Lewis, M., Styner, M., Shaffer, M., Sen, S., Yang, Q., & Huang, X. (2011). Combined R2* and diffusion tensor imaging changes in the substantia nigra in Parkinson’s disease. Movement Disorders, 26(9), 1627–1632.

Fearnley, J., & Lees, A. (1991). Ageing and Parkinson’s disease: substantia nigra regional selectivity. Brain, 114, 2283–2301.

Federau, C., Eth, D. P., Maeder, P., Brien, K. O., & Browaeys, P. (2012). Quantitative Measurement of Brain Perfusion with Intravoxel, 265(3).

German, D., Manaye, K., Smith, W., Woodward, D., & Saper, C. (1989). Midbrain dopaminergic cell loss in Parkinson’s disease: computer visualization. Ann Neurol, 26(4), 507–14.

Halliday, G., Li, Y., Joh, T., Cotton, R., Howe, P., Geffen, L., & Blessing, W. (1988). Distribution of monoamine-synthesizing neurons in the human medulla oblongata. J Comp Neurol, 273(3), 301–17.

Hasan, K. M., Walimuni, I. S., Abid, H., & Hahn, K. R. (2011). A review of diffusion tensor magnetic resonance imaging computational methods and software tools. Computers in Biology and Medicine, 41(12), 1062–72. doi:10.1016/j.compbiomed.2010.10.008

Hassler, R. (1938). [Zur Pathologie der Paralysis agitans und des Postenzephalitischen Parkinsonismus]. J Psychol Neurol, 48, 387–476 [in German].

Hirsch, E. (2009). Iron transport in Parkinson’s disease. Parkinsonism & Related Disorders, 15 Suppl 3, S209–11. doi:10.1016/S1353-8020(09)70816-8

Hirsch, E., & Faucheux, B. (1998). Iron metabolism and Parkinson’s disease. Mov Disord, 13(1), 39–45.

Hirsch, E., Graybiel, A., & Agid, Y. (1988). Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease. Nature, 334(6180), 345–8.

Ide, H., Kobayashi, H., Handa, Y., Kubota, T., Maeda, M., Itoh, S., & Ishii, Y. (1993). Correlation between somatosensory-evoked potentials and magnetic resonance imaging of focal cerebral ischemia in cats. Surgical Neurology, 40, 216–223. doi:10.1016/0090-3019(93)90070-H

Issidorides, M. R. (1971). Neuronal vascular relationships in the zona compacta of normal and parkinsonian substantia nigra. Brain Research, 25(2), 289–299. doi:10.1016/0006-8993(71)90439-2

Jellinger, K. (1986). Overview of morphological changes in Parkinson’s disease. Adv. Neurol, 45(1-18.).

Kitagawa, K., Matsumoto, M., Oda, T., Niinobe, M., Hata, R., Handa, N., … Kamada, T. (1990). Free radical generation during brief period of cerebral ischemia may trigger delayed neuronal death. Neuroscience, 35(3), 551–558. doi:10.1016/0306-4522(90)90328-2


Kohno, S., Sawamoto, N., Urayama, S., Aso, T., Aso, K., Seiyama, A., … Le Bihan, D. (2009). Water-diffusion slowdown in the human visual cortex upon visual stimulation precedes vascular responses. Neuroscience Research, 65, S131. doi:10.1016/j.neures.2009.09.634

Köllensperger, M., Seppi, K., Liener, C., & Al, E. (2007). Diffusion weighted imaging best discriminates PD from MSA-P: A comparison with tilt table testing and heart MIBG scintigraphy. Mov Disord, 22(12), 1771–1776.

Le Bihan, D. (2012). Diffusion, confusion and functional MRI. NeuroImage, 62(2), 1131–6. doi:10.1016/j.neuroimage.2011.09.058

LeBihan D, & Turner R. (1992). The capillary network: a link between IVIM and classical perfusion. Magnetic Resonance in Medicine : Official Journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine, 27(1), 171–8. Retrieved from

LeBihan, D. (2008). Intravoxel Incoherent Motion Perfusion MR Imaging: A Wake-Up Call. Radiology, 249(3), 748–752.

LeBihan, D., Breton, E., Lallemand, D., Aubin, M. L., Vignaud, J., & Laval-Jeantet, M. (1988). Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology, 168, 497–505. doi:10.1148/radiology.168.2.3393671

LeBihan, D., Breton, E., Lallemand, D., Grenier, P., Cabanis, E., & Laval-Jeantet, M. (1986). MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. Radiology, 161(2), 401–7.

LeBihan, D., Moonen, C., van Zijl, P., Pekar, J., & DesPres, D. (1991). Measuring random microscopic motion of water in tissues with MR imaging: a cat brain study. J Comput Assist Tomogr, 15(1), 19–25.

LeBihan, D., & Turner, R. (1992). The capillary network: a link between IVIM and classical perfusion. Magnetic Resonance in Medicine : Official Journal of the Society of Magnetic Resonance in Medicine / Society of Magnetic Resonance in Medicine, 27(1), 171–8.

Malonek, D., Dirnagl, U., Lindauer, U., Yamada, K., Kanno, I., & Grinvald, and A. (1997). Vascular imprints of neuronal activity : Relationships between the dynamics of cortical blood flow , oxygenation , and volume changes. Proceedings of the National Academy of Sciences, 94(December), 14826–14831.

Massey, L., & Yousry, T. (2010). Anatomy of the substantia nigra and subthalamic nucleus on MR imaging. Neuroimaging Clinics of North America, 20(1), 7–27. doi:10.1016/j.nic.2009.10.001

Meijer, F. J., Bloem, B. R., Mahlknecht, P., Seppi, K., & Goraj, B. (2013). Update on diffusion MRI in Parkinson’s disease and atypical parkinsonism. Journal of the Neurological Sciences, 332(1-2), 21–9. doi:10.1016/j.jns.2013.06.032

Mori, S., & Zhang, J. (2006). Principles of diffusion tensor imaging and its applications to basic neuroscience research. Neuron (Vol. 51, pp. 527–39).

Nicoletti, G., Fera, F., Condino, F., Auteri, W., & Gallo, O. (2006). Imaging of Middle Cerebellar Peduncle Width : Differentiation of Multiple System Atrophy from Purpose : Methods : Results : Conclusion : Radiology, 239(3), 825–830.

Ogawa, S., Lee, T. M., Nayak, A. S., & Glynn, P. (1990). Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magnetic Resonance in Medicine, 14, 68–78. doi:10.1002/mrm.1910140108

Ogawa, S., Menon, R. S., Tank, D. W., Kim, S. G., Merkle, H., Ellermann, J. M., & Ugurbil, K. (1993). Functional brain mapping by blood oxygenation level-dependent contrast magnetic resonance imaging. A comparison of signal characteristics with a biophysical model. Biophysical Journal, 64, 803–812. doi:10.1016/S0006-3495(93)81441-3

Ohtsuka, C., Sasaki, M., Konno, K., Koide, M., Kato, K., Takahashi, J., … Terayama, Y. (2013). Changes in substantia nigra and locus coeruleus in patients with early-stage Parkinson’s disease using neuromelanin-sensitive MR imaging. Neuroscience Letters, 541, 93–8. doi:10.1016/j.neulet.2013.02.012

Parent, A., & Hazrati, L.-N. (1995). Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidium in basal ganglia circuitry. Brain Research Reviews, 20(1), 128–154. doi:10.1016/0165-0173(94)00008-D

Péran, P., Cherubini, A., Assogna, F., & Al., E. (2010). Magnetic resonance imaging markers of Parkinson’s disease nigrostriatal signature. Brain, 133, 3423–3433.

Prodoehl, J., Spraker, M., Corcos, D., Comella, C., & Vaillancourt, D. (2010). Blood oxygenation level–dependent activation in basal ganglia nuclei relates to specific symptoms in de novo Parkinson’s disease. Mov. Disord, 25(13), 2035–2043. doi:10.1002/mds.23360.Blood

Raichle, M., Grubb, R. J., Gado, M., Eichling, J., & Ter-Pogossian, M. (1976). Correlation between regional cerebral blood flow and oxidative metabolism. In vivo studies in man. Arch Neurol, 33(8), 523–6.

Roy, C. S., & Sherrington, C. S. (1890). On the Regulation of the Blood-supply of the Brain. The Journal of Physiology, 11, 85–158.17. doi:10.1152/japplphysiol.00257.2010

Sasaki, T., Takemori, H., Yagita, Y., Terasaki, Y., Uebi, T., Horike, N., … Kitagawa, K. (2011). SIK2 Is a Key Regulator for Neuronal Survival after Ischemia via TORC1-CREB. Neuron, 69, 106–119. doi:10.1016/j.neuron.2010.12.004

Scheibel, A. B., & Tomiyasu, U. (1980). A dendritic-vascular relationship in the substantia nigra. Experimental Neurology, 70(3), 717–720. doi:10.1016/0014-4886(80)90198-3

Seppi, K., Schocke, M. F. H., Mair, K. J., Esterhammer, R., Scherfler, C., Geser, F., … Wenning, G. K. (2006). Progression of putaminal degeneration in multiple system atrophy: a serial diffusion MR study. NeuroImage, 31(1), 240–5. doi:10.1016/j.neuroimage.2005.12.006

Spraker, M. B., Prodoehl, J., Corcos, D. M., Comella, C. L., & Vaillancourt, D. E. (2010). Basal ganglia hypoactivity during grip force in drug naïve Parkinson’s disease. Human Brain Mapping, 31(12), 1928–41. doi:10.1002/hbm.20987

Tirosh, N., & Nevo, U. (2013). Neuronal activity significantly reduces water displacement: DWI of a vital rat spinal cord with no hemodynamic effect. NeuroImage, 76, 98–107. doi:10.1016/j.neuroimage.2013.02.065

Turner, R. (2002). How Much Cortex Can a Vein Drain? Downstream Dilution of Activation-Related Cerebral Blood Oxygenation Changes. NeuroImage, 16(4), 1062–1067. doi:10.1006/nimg.2002.1082

Vaillancourt, D., Spraker, M., Prodoehl, J., Abraham, I., Corcos, D., Zhou, X., … Little, D. (2009). High-resolution diffusion tensor imaging in the substantia nigra of de novo Parkinson disease. Neurology, 72(16), 1378–84.

Yoshikawa, K. (2004). Early pathological changes in the parkinsonian brain demonstrated by diffusion tensor MRI. Journal of Neurology, Neurosurgery & Psychiatry, 75(3), 481–484. doi:10.1136/jnnp.2003.021873

Zweig, R., Cardillo, J., Cohen, M., Giere, S., & Hedreen, J. (1993). The locus ceruleus and dementia in Parkinson’s disease. Neurology, 43(5), 986–91.

Cómo citar


Cruz, G., Nie, S., & Wang, L. (2014). Potential application of ivim and dwi imaging in parkinson’s disease. Tecnura, 18, 80–89.


Cruz, G., Nie, S. y Wang, L. 2014. Potential application of ivim and dwi imaging in parkinson’s disease. Tecnura. 18, (dic. 2014), 80–89. DOI:


Cruz, G.; Nie, S.; Wang, L. Potential application of ivim and dwi imaging in parkinson’s disease. Tecnura 2014, 18, 80-89.


CRUZ, G.; NIE, S.; WANG, L. Potential application of ivim and dwi imaging in parkinson’s disease. Tecnura, [S. l.], v. 18, p. 80–89, 2014. DOI: 10.14483/22487638.9245. Disponível em: Acesso em: 13 abr. 2021.


Cruz, Gloria, Shengdong Nie, y Lijia Wang. 2014. «Potential application of ivim and dwi imaging in parkinson’s disease». Tecnura 18 (diciembre):80-89.


Cruz, G., Nie, S. y Wang, L. (2014) «Potential application of ivim and dwi imaging in parkinson’s disease», Tecnura, 18, pp. 80–89. doi: 10.14483/22487638.9245.


G. Cruz, S. Nie, y L. Wang, «Potential application of ivim and dwi imaging in parkinson’s disease», Tecnura, vol. 18, pp. 80–89, dic. 2014.


Cruz, G., S. Nie, y L. Wang. «Potential application of ivim and dwi imaging in parkinson’s disease». Tecnura, vol. 18, diciembre de 2014, pp. 80-89, doi:10.14483/22487638.9245.


Cruz, Gloria, Shengdong Nie, y Lijia Wang. «Potential application of ivim and dwi imaging in parkinson’s disease». Tecnura 18 (diciembre 1, 2014): 80–89. Accedido abril 13, 2021.


Cruz G, Nie S, Wang L. Potential application of ivim and dwi imaging in parkinson’s disease. Tecnura [Internet]. 1 de diciembre de 2014 [citado 13 de abril de 2021];18:80-9. Disponible en:

Descargar cita






Los datos de descargas todavía no están disponibles.