Pedestrian systems design

Diseño de sistemas peatonales

  • Lindsay Álvarez Pomar Universidad Distrital Francisco José de Caldas
  • Germán Méndez Giraldo Universidad Distrital Francisco José de Caldas
  • Natália Martins Gonçalves Universidade do Extremo Sul Catarinense
Palabras clave: Computational cultural modelling, Sociotechnical systems, System analysis and design, System identification, Urban development. (en_US)
Palabras clave: Computational cultural modelling, Sociotechnical systems, System analysis and de­sign, System identification, Urban development. (es_ES)

Resumen (en_US)

Transport systems as components of mobility systems have become key elements for the development of cities. However, most efforts have been made to im­prove on motorized transport systems, leaving out the non-motorized ones including the pedestrians. Lately there has been a clear trend worldwide regar­ding awareness about the importance of walking to raise levels of quality of life, especially in cities. This phenomenon, coupled with the shortage of parking in relation to the amount of vehicles, fuel costs, and other considerations has shifted attention to pedes­trian systems. This paper presents a discussion of the context in which pedestrian systems are immersed, how they are defined, what is their significance, how they are designed and finally, concludes on what is the trend in their representation and what are the “gaps” or lacks in modeling of these systems. This paper concludes that there is a tendency to analyze pedestrian systems with a microscopic vision and to neglect their recognition as transport systems.

 

Resumen (es_ES)


Los sistemas de transporte como componentes de los sistemas de movilidad se han convertido en elementos clave para el desarrollo de las ciudades. Sin embargo, la mayoría de los esfuerzos se han realizado para mejorar los sistemas de transporte motorizado, dejando de lado los no motorizados, incluidos los peatones. Últimamente ha habido una tendencia clara en todo el mundo a tener en cuenta la importancia de caminar para elevar los niveles de calidad de vida, especialmente en las ciudades. Este fenómeno, junto con la escasez de estacionamiento en relación con la cantidad de vehículos, los costos de combustible y otras consideraciones, ha cambiado la atención a los sistemas peatonales. Este artículo presenta una discusión del contexto en el que se sumergen los sistemas peatonales, cómo se definen, cuál es su significado, cómo se diseñan y finalmente, concluye sobre cuál es la tendencia en su representación y cuáles son los "vacíos" o carencias. en el modelado de estos sistemas. Este trabajo concluye que hay una tendencia a analizar los sistemas peatonales con una visión microscópica y descuidar su reconocimiento como sistemas de transporte.

 

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Lindsay Álvarez Pomar, Universidad Distrital Francisco José de Caldas

Master in Industrial Engineering. Professor and Researcher at Universidad Distrital Francisco José de Caldas, Bogotá.

Germán Méndez Giraldo, Universidad Distrital Francisco José de Caldas

Doctorate in Technical Sciences; Master in Industrial Engineering. Professor and Researcher at Universidad Distrital Francisco José de Caldas, Bogotá.

Natália Martins Gonçalves, Universidade do Extremo Sul Catarinense

PhD in Transport Planning and Urban Development. Master in Industrial Engineering – Transport and Logistics. Profesor and Researcher at Universidade do Extremo Sul Catarinense, Criciuma, Brazil. 

Referencias

Antonini, G., Bierlaire, M. & Weber, M. (2006). Discre¬te choice models of pedestrian walking behavior. Transportation Research Part B: Methodological, 40(8), 667-687.

Beimborn, E. & Kennedy, R. (1996). Inside the Black¬box: Making transportation models work for livable communities. Milwaukee. Recuperado de http:// www4.uwm.edu/cuts/blackbox/blackbox.pdf

Burbidge, S., Vyas, M., Julie, B. & Mitman, M. (2012). Utah bicicle and pedestrian master plan design gui¬de. Utah. Recuperado de http://walkbikeplan.com/ wp-content/uploads/2012/03/UDOH-Bike-Ped_Fi¬nal_11-1-11.pdf

Cambon de Lavalette, B. et al. (2009). Pedestrian cros¬sing decision-making: A situational and behavioral approach. Safety Science, 47(9), 1248-1253.

Carsten, O. M. J., Sherborne, D. J. & Rothengatter, J. A. (1998). Intelligent traffic signals for pedestrians: Evaluation of trials in three countries. Transporta¬tion Research Part C: Emerging Technologies, 6, 213-229.

Cepolina, E. M. (2009). Phased evacuation: An optimi¬sation model which takes into account the capacity drop phenomenon in pedestrian flows. Fire Safety Journal, 44(4), 532-544.

Chen, Z., Chen, S., Lin, L. & Mao, B. (2007). Design and simulation of signal phase for pedestrians’ twi¬ce crossing at large signalized intersections. Journal of Transportation Systems Engineering and Informa¬tion Technology, 7(4), 57-65.

Department of Transport Western Australia. (2012). Planning and designing for pedestrians: guidelines. Recuperado de http://www.transport.wa.gov.au/ mediaFiles/active-transport/AT_WALK_P_plan_de¬sign_pedestrians_guidelines.pdf

Dotoli, M. & Fanti, M. P. (2006). An urban traffic ne¬twork model via coloured timed Petri nets. Control Engineering Practice, 14(10), 1213-1229.

Duarte, E. (2011). Desarrollo de un modelo para el sis¬tema de transporte público de la ciudad de Bogotá, D.C., basado en dinámica de sistemas. Univer¬sidad Distrital Francisco José de Caldas, Bogotá, Colombia.

Ezaki, T., Yanagisawa, D., Ohtsuka, K. & Nishinari, K. (2012). Simulation of space acquisition process of pedestrians using Proxemic Floor Field Model. Phy¬sica A: Statistical Mechanics and Its Applications, 391(1-2), 291-299

.

Fang, Z., Li, Q., Li, Q., Han, L. D. & Wang, D. (2011). A proposed pedestrian waiting-time model for impro¬ving space–time use efficiency in stadium evacua¬tion scenarios. Building and Environment, 46(9), 1774-1784.

Gaud, N., Galland, S., Gechter, F., Hilaire, V. & Ko¬ukam, A. (2008). Holonic multilevel simulation of complex systems: Application to real-time pedes¬trians simulation in virtual urban environment. Si¬mulation Modelling Practice and Theory, 16(10), 1659-1676.

Martins, N. (2014). Integrated urban transport planning: Accessible cities towards individual and collective development. Eberhard Karls Universität Tübingen, Germany.

Martins, N. (2012). Bus Rapid Transit: level of service analysis of pedestrian itinerary and the BRT sta¬tion towards user-friendly accessibility and univer¬sal design. In: 13th. Conference on Mobility and Transport for Elderly and Disable Persons. TRAN¬SED 2012, New Delhi.

Martins, N., Morato, R., Rothfuss, R. (2012). A organi¬zação e a ocupação do espaço urbano nas cida¬des do Século XXI: impactos das políticas públicas do Brasil dos anos 1990 no direito de ir e vir no ambiente local. Amicus Curiae. V.9, N.9. UNESC, Criciúma. Available at: http://periodicos.unesc.net/ index.php/amicus/article/viewFile/875/829 (Retrie¬ved in 05.04. 2014).

Martins, N. Silva, S. C. R. (2007). Gestão conjunta do transporte e trânsito em municípios integrados ao Sistema Nacional de Trânsito: o caso do Município de Criciuma, Brasil. In: 16º Congresso Brasileiro de Transporte e Trânsito. ANTP, Maceió. Available at: http://portal1.antp.net/site/bbtc/cng/Lists/cngr16/ prstc.aspx (Retrieved in 14.03.2014).

Gotoh, H., Harada, E. & Andoh, E. (2012). Simulation of pedestrian contra-flow by multi-agent DEM mo¬del with self-evasive action model. Safety Science, 50(2), 326-332.

Guo, R.-Y. & Tang, T.-Q. (2012). A simulation model for pedestrian flow through walkways with corners. Simulation Modelling Practice and Theory, 21(1), 103-113.

Hatfield, J. & Murphy, S. (2007). The effects of mobile phone use on pedestrian crossing behaviour at sig¬nalized and unsignalized intersections. Accident; Analysis and Prevention, 39(1), 197-205.

Hensher, D. & Button, K. (Ed.) (2005). Handbook of transport modelling. Netherland: Pergamon.

Ipsos Napoleón Franco. (2012). Segundo estudio de comportamiento y seguridad vial. Recuperado de http://fpv.org.co/images/repositorioftp/fpv-ii%20es¬tudio%20vial.pdf

Ishaque, M. M. & Noland, R. B. (2007). Trade-offs be¬tween vehicular and pedestrian traffic using mi¬cro-simulation methods. Transport Policy, 14(2), 124-138.

Islas, V. & Zaragoza, M. L. (2007). Análisis de los siste¬mas de transporte (307). Recuperado del sitio del Instituto Mexicano del Transporte: http://www.imt. mx/archivos/Publicaciones/PublicacionTecnica/ pt307.pdf

Jans, M. (2009). Movilidad urbana: En camino a siste¬mas de transporte colectivo integrados. AUS(Valdi¬via), 6, 6-11.

Jerez, S. & Torres, L. (Ed.) (2011). Manual de diseño de infraestructura peatonal urbana. Tunja: UPTC.

Jesins, M. (1973). Response of pedestrian to traffic cha¬llenge. Transportation Research, 8, 71-74.

Jian, L., Lizhong, Y. & Daoliang, Z. (2005). Simulation of bi-direction pedestrian movement in corridor. Phy¬sica A: Statistical Mechanics and Its Applications, 354, 619-628.

Jiang, Y. & Zhang, P. (2012). Modeling and simulation of pedestrian flow through hydrodynamics. Procedia Engineering, 31(2011), 1039-1044. doi:10.1016/j. proeng.2012.01.1139

Keegan, O. & O’Mahony, M. (2003). Modifying pedes¬trian behaviour. Transportation Research Part A: Po¬licy and Practice, 37(10), 889-901.

Kholshevnikov, V. V., Shields, T. J., Boyce, K. E. & Sa¬moshin, D. A. (2008). Recent developments in pe¬destrian flow theory and research in Russia. Fire Safety Journal, 43(2), 108-118.

Kulmala, R. (2010). Ex-ante assessment of the safety effects of intelligent transport systems. Accident; Analysis and Prevention, 42(4), 1359-1369.

Leden, L., Gårder, P. & Johansson, C. (2006). Safe pe¬destrian crossings for children and elderly. Acci¬dent; Analysis and Prevention, 38(2), 289-294. doi:10.1016/j.aap.2005.09.012

Löhner, R. (2010). On the modeling of pedestrian mo¬tion. Applied Mathematical Modelling, 34(2), 366-382.

López-Neri, E., Ramírez-Treviño, A. & López-Mellado, E. (2010). A modeling framework for urban traffic systems microscopic simulation. Simulation Model¬ling Practice and Theory, 18(8), 1145-1161.

Lovas, G. (1994). Modeling and simulation of pedes¬trian traffic flow. Transportation Research Part B: Methodological, 288(6), 429-443.

Ma, X. & Andréasson, I. (2005). Predicting the effect of various ISA penetration grades on pedestrian safety by simulation. Accident; Analysis and Prevention, 37(6), 1162-1169.

Milligan, C., Poapst, R. & Montufar, J. (2012). Perfor¬mance measures and input uncertainty for pe¬destrian crossing exposure estimates. Accident; Analysis and Prevention, 50, 490-498.

Montero, L., Codina, E. & Barcel, J. (2001). A com¬bined methodology for transportation planning assessment. Application to a case study. Transpor¬tation Research Part C: Emerging Technologies, 9, 213-230.

Montezuma, R. (2000). Presente y futuro de la movili¬dad urbana en Bogotá: Retos y realidades. Recu¬perado de http://www.scribd.com/doc/32147362/ Presente-y-futuro-de-la-movilidad-urbana-en-Bo¬gota-Retos-y-realidades

Novaes, Antonio. G. & Gonçalves, Natália M. (1996). Returns to Escale and User’s Benefits in Urban Bus

Operation. In: VII Conference on Development and Planning in Urban Transport. Proceedings... CODATU: Lion, France.

OCDE. (2011). Peatones: seguridad vial, espacio urbano y salud. Recuperado de http://www.international-transportforum.org/pub/pdf/11PedestrianSumES. pdf

Otak. (1997). Pedestrian Facilities Guide Book. Recu¬perado de http://www.wsdot.wa.gov/publications/ manuals/fulltext/m0000/pedfacgb.pdf.

Roads and Traffic Autority. (2002). How to prepare a pe¬destrian access and mobility plan. Recuperado de http://www.rms.nsw.gov.au/doingbusinesswithus/ downloads/technicalmanuals/mobility-plan_how-to.pdf

Robin, T., Antonini, G., Bierlaire, M. & Cruz, J. (2009). Specification, estimation and validation of a pedes¬trian walking behavior model. Transportation Re¬search Part B: Methodological, 43(1), 36-56.

Secretaría de Tránsito y Transporte. (Ed.) (2005). Manual de planeación y diseño para la administración del tránsito y el transporte. Bogotá: Escuela Colombia¬na de Ingeniería.

Seyfried, A., Steffen, B. & Lippert, T. (2006). Basics of modelling the pedestrian flow. Physica A: Statistical Mechanics and Its Applications, 368(1), 232-238.

Shao, W. & Terzopoulos, D. (2007). Autonomous pedes¬trians. Graphical Models, 69(5-6), 246-274.

STAQ. (2005). Best practices for pedestrian master plan¬ning and design. Recuperado de http://www.sacta. org/pdf/STAQC/FinalReportII_BPPedestrian.pdf .

Suma, Y., Yanagisawa, D. & Nishinari, K. (2012). Antici¬pation effect in pedestrian dynamics: Modeling and experiments. Physica A: Statistical Mechanics and Its Applications, 391(1-2), 248-263.

Tian, L., Huang, H. & Liu, T. (2010). Day-to-day route choice decision simulation based on dynamic feedback information. Journal of Transportation Systems Engineering and Information Technology, 10(4), 79-85.

Tom, A. & Granié, M.-A. (2011). Gender differences in pedestrian rule compliance and visual search at signalized and unsignalized crossroads. Accident Analysis and Prevention, 43(5), 1794-1801.

Transit Cooperative Research Program. (1999). Transit capacity and quality of service manual (100) Re¬cuperado de la página del Transportation Resear¬ch Board http://onlinepubs.trb.org/onlinepubs/tcrp/ tcrp100/part%200.pdf.

Transportation Research Board. (2000). Highway capa¬city manual. Recuperado de http://sjnavarro.files. wordpress.com/2008/08/highway_capacital_ma¬nual.pdf

Vasconcellos et al. (2001). Urban transport, environ¬ment and equity: The case for developing coun¬tries. Earthscan, London.

Venuti, F. & Bruno, L. (2007). An interpretative model of the pedestrian fundamental relation. Comptes Ren¬dus Mécanique, 335(4), 194-200. doi:10.1016/j. crme.2007.03.008

Xi, H. & Son, Y.-J. (2012). Two-level modeling framework for pedestrian route choice and walking behaviors. Simulation Modelling Practice and Theory, 22, 28-46.

Yang, J. et al. (2006). Modeling pedestrians’ road cros¬sing behavior in traffic system micro-simulation in China. Transportation Research Part A: Policy and Practice, 40(3), 280-290.

Yang, W.-D. & Wang, T. (2012). The fusion model of in¬telligent transportation systems based on the urban traffic ontology. Physics Procedia, 25, 917-923.

Zhang, Q. & Han, B. (2011). Simulation model of pe¬destrian interactive behavior. Physica A: Statistical Mechanics and Its Applications, 390(4), 636-646.

Cómo citar
Álvarez Pomar, L., Méndez Giraldo, G., & Martins Gonçalves, N. (2014). Diseño de sistemas peatonales. Tecnura, 18, 124-135. https://doi.org/10.14483/22487638.9249
Publicado: 2014-12-01

Artículos más leídos del mismo autor/a