Publicado:
2015-12-01Número:
Vol. 12 Núm. 2 (2015): Revista TekhnêSección:
ArtículosEvaluación de estrategia de navegación autónoma basada en comportamiento reactivo para plataformas robóticas móviles
Evaluation of autonomous navigation strategy based on reactive behavior for mobile robotic platforms
Palabras clave:
Planeación de movimiento, robot móvil, sistema no holonómicos, sonar (es).Palabras clave:
Mobile robot, nonholonomic system, path planning, sonar (en).Descargas
Resumen (es)
En esta investigación se presenta una evaluación de desempeño sobre una plataforma real de una estrategia utilizada para el cálculo del movimiento de un robot no holonómico en un ambiente desordenado. El robot no tiene acceso a la información métrica sobre la ubicación de los obstáculos o de su propia posición, ni tampoco control de odometría o velocidad. Se utiliza el reconocimiento en tiempo real de la señal radiada desde la posición de destino, que permite al robot navegar y aprender información global acerca de la ubicación del destino. Se demuestran tareas de ejemplo que se pueden realizar con este enfoque.Resumen (en)
We presented a performance evaluation on a real platform of an approach to computing motion strategies for a nonholonomic robot in a cluttered environment. The robot has no access to either metric information about the location of obstacles and its own position, or to odometry or speed controls. We use real-time recognition of radiated signal from the target position, that allow the robot to navigate and to learn global information about the target location. We demonstrate example tasks that can be performed using this approach.Referencias
Arroyave, S., y Gallego, J. (2012). Path planning applied to the mobile robot gbot. En Xvii symposium of image, signal processing, and artificial vision (stsiva) (p. 281-288).
Bobadilla, L., Sanchez, O., Czarnowski, J., Gossman, K., y LaValle, S. (2011). Controlling wild bodies using linear temporal logic. En Robotics: Science and systems (p. 17-24).
Byoung-Kyun, S., Jun-Seok, Y., Eok-Gon, K., Yang-Keun, J., Jong, B., y Sung-Hyun, H. (2015). A travelling control of mobile robot based on sonar sensors. En 2015 15th international conference on control, automation and systems (iccas 2015) (p. 1241-1243).
Byoung-Kyun, S., Won-Jun, H., Kyung-Sun, C., Le, X., y Sung-Hyun, H. (2012). A study on real-time implementation of obstacle avoidance for autonomous travelling robot. En 12th international conference on control, automation and systems (iccas 2012) (p. 1896-1899).
Carvalho, V., Motta, C., y Santos, F. (2014). A hybrid approach for path planning and execution for autonomous mobile robots. En Joint conference on robotics: Sbr-lars robotics symposium and robocontrol (sbr lars robocontrol 2014) (p. 124-129).
Castiblanco, M., y Martínez, F. (2014). Exploración de un modelo comportamental basado en el quorum sensing bacterial para describir la interacción entre individuos. Tekhnê, 11(1), 21-26. (ISSN 1692-8407)
Erickson, L., Knuth, J., Okane, J., y LaValle, S. (2008). Probabilistic localization with a blind robot. En Ieee international conference on robotics and automation icra 2008 (p. 1821-1827).
Kamon, I., Rimon, E., y Rivlin, E. (1999). Range-sensor based navigation in three dimensions. En Ieee international conference on robotics and automation (Vol. 1, p. 163-169).
Kamon, I., y Rivlin, E. (1995). Sensory based motion planning with global proofs. En Ieee/rsj international conference on intelligent robots and systems 95. ’human robot interaction and cooperative robots’ (Vol. 2, p. 435-440).
Kuo-Ho, S., Tan-Phat, P., Chan-Yun, Y., y Wen-June, W. (2014). Image-based smooth path planning for wheeled robot. En 11th ieee international conference on control & automation (icca) (p. 203-207).
Laubach, S., y Burdick, J. (1998). Practical autonomous path planner for turn-of-the-century planetary microrovers. En Mobile robots xiii and intelligent transportation systems (Vol. 3525).
LaValle, S. (2006). Planning algorithms. Cambridge University Press.
Lumelsky, V. (2005). Sensing, intelligence, motion: How robots and humans move in an unstructured world. Wiley.
Marques, F., Santana, P., Guedes, M., Pinto, E., Lourenco, A., y Barata, J. (2013). Online self-reconfigurable robot navigation in heterogeneous environments. En Ieee international symposium on industrial electronics (isie 2013) (p. 1-6).
Qiwen, Z., Rekleitis, I., y Dudek, G. (2015). Uncertainty reduction via heuristic search planning on hybrid metric/topological map. En Computer and robot vision (crv 2015) (p. 222-229).
Taylor, K., y LaValle, S. (2009). I-bug: An intensity-based bug algorithm. En Ieee international conference on robotics and automation icra ’09 (p. 3981-3986).
Tovar, B., Murrieta, R., y LaValle, S. (2007). Distance-optimal navigation in an unknown environment without sensing distances. IEEE Transactions on Robotics, 23(1), 506-518.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Visitas
Descargas
Licencia
Aquellos autores/as que tengan publicaciones con esta revista, aceptan los términos siguientes:
- Los autores/as conservarán sus derechos de autor y garantizarán a la revista el derecho de primera publicación de su obra, el cuál estará simultáneamente sujeto a la Licencia de reconocimiento de Creative Commons que permite a terceros compartir la obra siempre que se indique su autor y su primera publicación esta revista.
- Los autores/as podrán adoptar otros acuerdos de licencia no exclusiva de distribución de la versión de la obra publicada (p. ej.: depositarla en un archivo telemático institucional o publicarla en un volumen monográfico) siempre que se indique la publicación inicial en esta revista.
- Se permite y recomienda a los autores/as difundir su obra a través de Internet (p. ej.: en archivos telemáticos institucionales o en su página web) antes y durante el proceso de envío, lo cual puede producir intercambios interesantes y aumentar las citas de la obra publicada.