Publicado:

2015-12-01

Número:

Vol. 12 Núm. 2 (2015): Revista Tekhnê

Sección:

Artículos

Evaluación de estrategia de navegación autónoma basada en comportamiento reactivo para plataformas robóticas móviles

Evaluation of autonomous navigation strategy based on reactive behavior for mobile robotic platforms

Autores/as

  • Angélica V. Rendón C. Universidad Distrital Francisco José de Caldas

Palabras clave:

Planeación de movimiento, robot móvil, sistema no holonómicos, sonar (es).

Palabras clave:

Mobile robot, nonholonomic system, path planning, sonar (en).

Descargas

Resumen (es)

En esta investigación se presenta una evaluación de desempeño sobre una plataforma real de una estrategia utilizada para el cálculo del movimiento de un robot no holonómico en un ambiente desordenado. El robot no tiene acceso a la información métrica sobre la ubicación de los obstáculos o de su propia posición, ni tampoco control de odometría o velocidad. Se utiliza el reconocimiento en tiempo real de la señal radiada desde la posición de destino, que permite al robot  navegar y aprender información global acerca de la ubicación del destino. Se demuestran tareas de ejemplo que se pueden realizar con este enfoque.

Resumen (en)

We presented a performance evaluation on a real platform of an approach to computing motion strategies for a nonholonomic robot in a cluttered environment. The robot has no access to either metric information about the location of obstacles and its own position, or to odometry or speed controls. We use real-time recognition of radiated signal from the target position, that allow the robot to navigate and to learn global information about the target location. We demonstrate example tasks that can be performed using this approach.

Biografía del autor/a

Angélica V. Rendón C., Universidad Distrital Francisco José de Caldas

Tecnologa en Electricidad

Referencias

Arroyave, S., y Gallego, J. (2012). Path planning applied to the mobile robot gbot. En Xvii symposium of image, signal processing, and artificial vision (stsiva) (p. 281-288).

Bobadilla, L., Sanchez, O., Czarnowski, J., Gossman, K., y LaValle, S. (2011). Controlling wild bodies using linear temporal logic. En Robotics: Science and systems (p. 17-24).

Byoung-Kyun, S., Jun-Seok, Y., Eok-Gon, K., Yang-Keun, J., Jong, B., y Sung-Hyun, H. (2015). A travelling control of mobile robot based on sonar sensors. En 2015 15th international conference on control, automation and systems (iccas 2015) (p. 1241-1243).

Byoung-Kyun, S., Won-Jun, H., Kyung-Sun, C., Le, X., y Sung-Hyun, H. (2012). A study on real-time implementation of obstacle avoidance for autonomous travelling robot. En 12th international conference on control, automation and systems (iccas 2012) (p. 1896-1899).

Carvalho, V., Motta, C., y Santos, F. (2014). A hybrid approach for path planning and execution for autonomous mobile robots. En Joint conference on robotics: Sbr-lars robotics symposium and robocontrol (sbr lars robocontrol 2014) (p. 124-129).

Castiblanco, M., y Martínez, F. (2014). Exploración de un modelo comportamental basado en el quorum sensing bacterial para describir la interacción entre individuos. Tekhnê, 11(1), 21-26. (ISSN 1692-8407)

Erickson, L., Knuth, J., Okane, J., y LaValle, S. (2008). Probabilistic localization with a blind robot. En Ieee international conference on robotics and automation icra 2008 (p. 1821-1827).

Kamon, I., Rimon, E., y Rivlin, E. (1999). Range-sensor based navigation in three dimensions. En Ieee international conference on robotics and automation (Vol. 1, p. 163-169).

Kamon, I., y Rivlin, E. (1995). Sensory based motion planning with global proofs. En Ieee/rsj international conference on intelligent robots and systems 95. ’human robot interaction and cooperative robots’ (Vol. 2, p. 435-440).

Kuo-Ho, S., Tan-Phat, P., Chan-Yun, Y., y Wen-June, W. (2014). Image-based smooth path planning for wheeled robot. En 11th ieee international conference on control & automation (icca) (p. 203-207).

Laubach, S., y Burdick, J. (1998). Practical autonomous path planner for turn-of-the-century planetary microrovers. En Mobile robots xiii and intelligent transportation systems (Vol. 3525).

LaValle, S. (2006). Planning algorithms. Cambridge University Press.

Lumelsky, V. (2005). Sensing, intelligence, motion: How robots and humans move in an unstructured world. Wiley.

Marques, F., Santana, P., Guedes, M., Pinto, E., Lourenco, A., y Barata, J. (2013). Online self-reconfigurable robot navigation in heterogeneous environments. En Ieee international symposium on industrial electronics (isie 2013) (p. 1-6).

Qiwen, Z., Rekleitis, I., y Dudek, G. (2015). Uncertainty reduction via heuristic search planning on hybrid metric/topological map. En Computer and robot vision (crv 2015) (p. 222-229).

Taylor, K., y LaValle, S. (2009). I-bug: An intensity-based bug algorithm. En Ieee international conference on robotics and automation icra ’09 (p. 3981-3986).

Tovar, B., Murrieta, R., y LaValle, S. (2007). Distance-optimal navigation in an unknown environment without sensing distances. IEEE Transactions on Robotics, 23(1), 506-518.

Cómo citar

APA

Rendón C., A. V. (2015). Evaluación de estrategia de navegación autónoma basada en comportamiento reactivo para plataformas robóticas móviles. Tekhnê, 12(2), 75–82. Recuperado a partir de https://revistas.udistrital.edu.co/index.php/tekhne/article/view/10663

ACM

[1]
Rendón C., A.V. 2015. Evaluación de estrategia de navegación autónoma basada en comportamiento reactivo para plataformas robóticas móviles. Tekhnê. 12, 2 (dic. 2015), 75–82.

ACS

(1)
Rendón C., A. V. Evaluación de estrategia de navegación autónoma basada en comportamiento reactivo para plataformas robóticas móviles. Tekhnê 2015, 12, 75-82.

ABNT

RENDÓN C., A. V. Evaluación de estrategia de navegación autónoma basada en comportamiento reactivo para plataformas robóticas móviles. Tekhnê, [S. l.], v. 12, n. 2, p. 75–82, 2015. Disponível em: https://revistas.udistrital.edu.co/index.php/tekhne/article/view/10663. Acesso em: 30 nov. 2022.

Chicago

Rendón C., Angélica V. 2015. «Evaluación de estrategia de navegación autónoma basada en comportamiento reactivo para plataformas robóticas móviles». Tekhnê 12 (2):75-82. https://revistas.udistrital.edu.co/index.php/tekhne/article/view/10663.

Harvard

Rendón C., A. V. (2015) «Evaluación de estrategia de navegación autónoma basada en comportamiento reactivo para plataformas robóticas móviles», Tekhnê, 12(2), pp. 75–82. Disponible en: https://revistas.udistrital.edu.co/index.php/tekhne/article/view/10663 (Accedido: 30noviembre2022).

IEEE

[1]
A. V. Rendón C., «Evaluación de estrategia de navegación autónoma basada en comportamiento reactivo para plataformas robóticas móviles», Tekhnê, vol. 12, n.º 2, pp. 75–82, dic. 2015.

MLA

Rendón C., A. V. «Evaluación de estrategia de navegación autónoma basada en comportamiento reactivo para plataformas robóticas móviles». Tekhnê, vol. 12, n.º 2, diciembre de 2015, pp. 75-82, https://revistas.udistrital.edu.co/index.php/tekhne/article/view/10663.

Turabian

Rendón C., Angélica V. «Evaluación de estrategia de navegación autónoma basada en comportamiento reactivo para plataformas robóticas móviles». Tekhnê 12, no. 2 (diciembre 1, 2015): 75–82. Accedido noviembre 30, 2022. https://revistas.udistrital.edu.co/index.php/tekhne/article/view/10663.

Vancouver

1.
Rendón C. AV. Evaluación de estrategia de navegación autónoma basada en comportamiento reactivo para plataformas robóticas móviles. Tekhnê [Internet]. 1 de diciembre de 2015 [citado 30 de noviembre de 2022];12(2):75-82. Disponible en: https://revistas.udistrital.edu.co/index.php/tekhne/article/view/10663

Descargar cita

Visitas

306

Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a