Publicado:

2021-12-24

Número:

Vol. 18 Núm. 2 (2021): Revista Tekhnê

Sección:

Artículos

Traveling wave method for analysis of faults in a high voltage transmission line

Método de las ondas viajeras para el análisis de fallas en una línea de transmisión de alta tensión

Autores/as

  • Yonatan F. Ochoa V. Universidad Distrital Francisco José de Caldas
  • Cristian F. Penagos B. Universidad Distrital Francisco José de Caldas

Palabras clave:

ATP-EMTP, fault location, high voltage, transmission line, traveling wave (en).

Palabras clave:

ATP-EMTP, Alta tensión, línea de transmisión, localización de fallas, onda viajera (es).

Descargas

Resumen (en)

This paper presents an analysis of the error presented in the location of faults by the traveling wave method, and the traveling wave method analyzing reflected waves. This analysis arises from the results of the simulation of a high voltage transmission line in the ATP-EMTP software that allows us to simulate faults in a very graphical way and gives, as a result, the waveform presented at the measurement points. The results show similar behavior between theoretical behavior and simulation.

Resumen (es)

En este artículo se presenta un análisis sobre el error presentado en la ubicación de fallas por el método de ondas viajeras, y el método de ondas viajeras analizando ondas reflejadas. Este análisis surge de los resultados de la simulación de una línea de transmisión en alta tensión en el software ATP-EMTP que nos permite simular fallas de una forma bastante gráfica, y da como resultado la forma de onda presentada en los puntos de medición. Los resultados muestran comportamientos similares entre comportamiento teórico y simulación.

Referencias

Abubakar, U., Mekhilef, S., Gaeid, K. S., Mokhlis, H., & Mashhadany, Y. I. A. (2020). Induction motor fault detection based on multi-sensory control and wavelet analysis. IET Electric Power Applications, 14(11), 2051–2061. https://doi.org/10.1049/iet -epa.2020.0030

Adly, A. R., Aleem, S. H. E. A., Algabalawy, M. A., Jurado, F., & Ali, Z. M. (2020). A novel protection scheme for multi-terminal transmission lines based on wavelet transform. Electric Power Systems Research, 183(1), 106286. https://doi.org/10.1016/j.epsr.2020.106286

Afrasiabi, S., Afrasiabi, M., Mohammadi, M., & Parang, B. (2020). Fault localisation and diagnosis in transmission networks based on robust deep gabor convolutional neural network and PMU measurements. IET Generation, Transmission & Distribution, 14(26), 6484–6492. https://doi.org/10.1049/iet-gtd.2020.0856

Barman, J., & Hazarika, D. (2020). Linear and quadratic time–frequency analysis of vibration for fault detection and identification of NFR trains. IEEE Transactions on Instrumentation and Measurement, 69(11), 8902–8909. https://doi.org/10.1109/TIM.2020.2998888

Cherif, H., Benakcha, A., Laib, I., Chehaidia, S. E., Menacer, A., Soudan, B., & Olabi, A. (2020). Early detection and localization of stator inter-turn faults based on discrete wavelet energy ratio and neural networks in induction motor. Energy, 212(1), 118684. https://doi.org/10.1016/j.energy.2020.118684

Gafoor, S. A., & Rao, P. V. R. Wavelet based fault detection, classification and location in transmission lines. In: 2006 IEEE international power and energy conference. 2006, 1–6. https://doi.org/10.1109/PECON.2006.346630.

Huang, J., Gao, H., Zhao, L., & Feng, Y. (2020). Instantaneous active power integral differential protection for hybrid AC/DC transmission systems based on fault variation component. IEEE Transactions on Power Delivery, 35(6), 2791–2799. https://doi.org/10.1109/TPWRD.2020.3011459

Li, X., Wu, S., Li, X., Yuan, H., & Zhao, D. (2020). Particle swarm optimization-support vector machine model for machinery fault diagnoses in high-voltage circuit breakers. Chinese Journal of Mechanical Engineering, 33(1), 6. https://doi.org/10.1186/s10033-019-0428-5

Rafique, F., Fu, L., & Mai, R. (2021). End to end machine learning for fault detection and classification in power transmission lines. Electric Power Systems Research, 199(1), 107430. https://doi.org/10.1016/j.epsr.2021.107430

Ren, H., Hou, Z. J., Vyakaranam, B., Wang, H., & Etingov, P. (2020). Power system event classification and localization using a convolutional neural network. Frontiers in Energy Research, 8(1), 607826. https://doi.org/10.3389/fenrg.2020.607826

Rivas, A. E. L., & Abrão, T. (2020). Faults in smart grid systems: Monitoring, detection and classification. Electric Power Systems Research, 189, 106602. https://doi.org/10.1016/j.epsr.2020.106602

Saber, A., Zeineldin, H., El-Fouly, T., & Al-Durra, A. (2020). Current differential relay characteristic for bipolar HVDC transmission line fault detection. IET Generation, Transmission & Distribution, 14(23), 5505–5513. https://doi.org/10.1049/iet-gtd.2020.0556

Torres, V., Guillen, D., Olveres, J., Escalante, B., & Rodriguez, J. (2020). Modelling of high impedance faults in distribution systems and validation based on multiresolution techniques. Computers & Electrical Engineering, 83(1), 106576. https://doi.org/10.1016/j.compeleceng.2020.106576

Wang, S., & Dehghanian, P. (2020). On the use of artificial intelligence for high impedance fault detection and electrical safety. IEEE Transactions on Industry Applications, 56(6), 7208–7216. https://doi.org/10.1109/TIA.2020.3017698

Yousaf, M. Z., Liu, H., Raza, A., & Baig, M. B. (2020). Primary and backup fault detection techniques for multi-terminal HVdc systems: A review. IET Generation, Transmission & Distribution, 14(22), 5261–5276. https://doi.org/10.1049/iet-gtd.2020.0060

Cómo citar

APA

Ochoa V., Y. F., & Penagos B., C. F. (2021). Traveling wave method for analysis of faults in a high voltage transmission line. Tekhnê, 18(2), 13–18. Recuperado a partir de https://revistas.udistrital.edu.co/index.php/tekhne/article/view/19260

ACM

[1]
Ochoa V., Y.F. y Penagos B., C.F. 2021. Traveling wave method for analysis of faults in a high voltage transmission line. Tekhnê. 18, 2 (dic. 2021), 13–18.

ACS

(1)
Ochoa V., Y. F.; Penagos B., C. F. Traveling wave method for analysis of faults in a high voltage transmission line. Tekhnê 2021, 18, 13-18.

ABNT

OCHOA V., Y. F.; PENAGOS B., C. F. Traveling wave method for analysis of faults in a high voltage transmission line. Tekhnê, [S. l.], v. 18, n. 2, p. 13–18, 2021. Disponível em: https://revistas.udistrital.edu.co/index.php/tekhne/article/view/19260. Acesso em: 19 may. 2022.

Chicago

Ochoa V., Yonatan F., y Cristian F. Penagos B. 2021. «Traveling wave method for analysis of faults in a high voltage transmission line». Tekhnê 18 (2):13-18. https://revistas.udistrital.edu.co/index.php/tekhne/article/view/19260.

Harvard

Ochoa V., Y. F. y Penagos B., C. F. (2021) «Traveling wave method for analysis of faults in a high voltage transmission line», Tekhnê, 18(2), pp. 13–18. Disponible en: https://revistas.udistrital.edu.co/index.php/tekhne/article/view/19260 (Accedido: 19mayo2022).

IEEE

[1]
Y. F. Ochoa V. y C. F. Penagos B., «Traveling wave method for analysis of faults in a high voltage transmission line», Tekhnê, vol. 18, n.º 2, pp. 13–18, dic. 2021.

MLA

Ochoa V., Y. F., y C. F. Penagos B. «Traveling wave method for analysis of faults in a high voltage transmission line». Tekhnê, vol. 18, n.º 2, diciembre de 2021, pp. 13-18, https://revistas.udistrital.edu.co/index.php/tekhne/article/view/19260.

Turabian

Ochoa V., Yonatan F., y Cristian F. Penagos B. «Traveling wave method for analysis of faults in a high voltage transmission line». Tekhnê 18, no. 2 (diciembre 24, 2021): 13–18. Accedido mayo 19, 2022. https://revistas.udistrital.edu.co/index.php/tekhne/article/view/19260.

Vancouver

1.
Ochoa V. YF, Penagos B. CF. Traveling wave method for analysis of faults in a high voltage transmission line. Tekhnê [Internet]. 24 de diciembre de 2021 [citado 19 de mayo de 2022];18(2):13-8. Disponible en: https://revistas.udistrital.edu.co/index.php/tekhne/article/view/19260

Descargar cita

Visitas

3

Descargas

Los datos de descargas todavía no están disponibles.