Published:

2021-12-24

Traveling wave method for analysis of faults in a high voltage transmission line

Método de las ondas viajeras para el análisis de fallas en una línea de transmisión de alta tensión

Authors

  • Yonatan F. Ochoa V. Universidad Distrital Francisco José de Caldas
  • Cristian F. Penagos B. Universidad Distrital Francisco José de Caldas

Keywords:

ATP-EMTP, Alta tensión, línea de transmisión, localización de fallas, onda viajera (es).

Keywords:

ATP-EMTP, fault location, high voltage, transmission line, traveling wave (en).

Downloads

Abstract (en)

This paper presents an analysis of the error presented in the location of faults by the traveling wave method, and the traveling wave method analyzing reflected waves. This analysis arises from the results of the simulation of a high voltage transmission line in the ATP-EMTP software that allows us to simulate faults in a very graphical way and gives, as a result, the waveform presented at the measurement points. The results show similar behavior between theoretical behavior and simulation.

Abstract (es)

En este artículo se presenta un análisis sobre el error presentado en la ubicación de fallas por el método de ondas viajeras, y el método de ondas viajeras analizando ondas reflejadas. Este análisis surge de los resultados de la simulación de una línea de transmisión en alta tensión en el software ATP-EMTP que nos permite simular fallas de una forma bastante gráfica, y da como resultado la forma de onda presentada en los puntos de medición. Los resultados muestran comportamientos similares entre comportamiento teórico y simulación.

References

Abubakar, U., Mekhilef, S., Gaeid, K. S., Mokhlis, H., & Mashhadany, Y. I. A. (2020). Induction motor fault detection based on multi-sensory control and wavelet analysis. IET Electric Power Applications, 14(11), 2051–2061. https://doi.org/10.1049/iet -epa.2020.0030

Adly, A. R., Aleem, S. H. E. A., Algabalawy, M. A., Jurado, F., & Ali, Z. M. (2020). A novel protection scheme for multi-terminal transmission lines based on wavelet transform. Electric Power Systems Research, 183(1), 106286. https://doi.org/10.1016/j.epsr.2020.106286

Afrasiabi, S., Afrasiabi, M., Mohammadi, M., & Parang, B. (2020). Fault localisation and diagnosis in transmission networks based on robust deep gabor convolutional neural network and PMU measurements. IET Generation, Transmission & Distribution, 14(26), 6484–6492. https://doi.org/10.1049/iet-gtd.2020.0856

Barman, J., & Hazarika, D. (2020). Linear and quadratic time–frequency analysis of vibration for fault detection and identification of NFR trains. IEEE Transactions on Instrumentation and Measurement, 69(11), 8902–8909. https://doi.org/10.1109/TIM.2020.2998888

Cherif, H., Benakcha, A., Laib, I., Chehaidia, S. E., Menacer, A., Soudan, B., & Olabi, A. (2020). Early detection and localization of stator inter-turn faults based on discrete wavelet energy ratio and neural networks in induction motor. Energy, 212(1), 118684. https://doi.org/10.1016/j.energy.2020.118684

Gafoor, S. A., & Rao, P. V. R. Wavelet based fault detection, classification and location in transmission lines. In: 2006 IEEE international power and energy conference. 2006, 1–6. https://doi.org/10.1109/PECON.2006.346630.

Huang, J., Gao, H., Zhao, L., & Feng, Y. (2020). Instantaneous active power integral differential protection for hybrid AC/DC transmission systems based on fault variation component. IEEE Transactions on Power Delivery, 35(6), 2791–2799. https://doi.org/10.1109/TPWRD.2020.3011459

Li, X., Wu, S., Li, X., Yuan, H., & Zhao, D. (2020). Particle swarm optimization-support vector machine model for machinery fault diagnoses in high-voltage circuit breakers. Chinese Journal of Mechanical Engineering, 33(1), 6. https://doi.org/10.1186/s10033-019-0428-5

Rafique, F., Fu, L., & Mai, R. (2021). End to end machine learning for fault detection and classification in power transmission lines. Electric Power Systems Research, 199(1), 107430. https://doi.org/10.1016/j.epsr.2021.107430

Ren, H., Hou, Z. J., Vyakaranam, B., Wang, H., & Etingov, P. (2020). Power system event classification and localization using a convolutional neural network. Frontiers in Energy Research, 8(1), 607826. https://doi.org/10.3389/fenrg.2020.607826

Rivas, A. E. L., & Abrão, T. (2020). Faults in smart grid systems: Monitoring, detection and classification. Electric Power Systems Research, 189, 106602. https://doi.org/10.1016/j.epsr.2020.106602

Saber, A., Zeineldin, H., El-Fouly, T., & Al-Durra, A. (2020). Current differential relay characteristic for bipolar HVDC transmission line fault detection. IET Generation, Transmission & Distribution, 14(23), 5505–5513. https://doi.org/10.1049/iet-gtd.2020.0556

Torres, V., Guillen, D., Olveres, J., Escalante, B., & Rodriguez, J. (2020). Modelling of high impedance faults in distribution systems and validation based on multiresolution techniques. Computers & Electrical Engineering, 83(1), 106576. https://doi.org/10.1016/j.compeleceng.2020.106576

Wang, S., & Dehghanian, P. (2020). On the use of artificial intelligence for high impedance fault detection and electrical safety. IEEE Transactions on Industry Applications, 56(6), 7208–7216. https://doi.org/10.1109/TIA.2020.3017698

Yousaf, M. Z., Liu, H., Raza, A., & Baig, M. B. (2020). Primary and backup fault detection techniques for multi-terminal HVdc systems: A review. IET Generation, Transmission & Distribution, 14(22), 5261–5276. https://doi.org/10.1049/iet-gtd.2020.0060

How to Cite

APA

Ochoa V., Y. F., and Penagos B., C. F. (2021). Traveling wave method for analysis of faults in a high voltage transmission line. Tekhnê, 18(2), 13–18. https://revistas.udistrital.edu.co/index.php/tekhne/article/view/19260

ACM

[1]
Ochoa V., Y.F. and Penagos B., C.F. 2021. Traveling wave method for analysis of faults in a high voltage transmission line. Tekhnê. 18, 2 (Dec. 2021), 13–18.

ACS

(1)
Ochoa V., Y. F.; Penagos B., C. F. Traveling wave method for analysis of faults in a high voltage transmission line. Tekhnê 2021, 18, 13-18.

ABNT

OCHOA V., Yonatan F.; PENAGOS B., Cristian F. Traveling wave method for analysis of faults in a high voltage transmission line. Tekhnê, [S. l.], v. 18, n. 2, p. 13–18, 2021. Disponível em: https://revistas.udistrital.edu.co/index.php/tekhne/article/view/19260. Acesso em: 17 jul. 2024.

Chicago

Ochoa V., Yonatan F., and Cristian F. Penagos B. 2021. “Traveling wave method for analysis of faults in a high voltage transmission line”. Tekhnê 18 (2):13-18. https://revistas.udistrital.edu.co/index.php/tekhne/article/view/19260.

Harvard

Ochoa V., Y. F. and Penagos B., C. F. (2021) “Traveling wave method for analysis of faults in a high voltage transmission line”, Tekhnê, 18(2), pp. 13–18. Available at: https://revistas.udistrital.edu.co/index.php/tekhne/article/view/19260 (Accessed: 17 July 2024).

IEEE

[1]
Y. F. Ochoa V. and C. F. Penagos B., “Traveling wave method for analysis of faults in a high voltage transmission line”, Tekhnê, vol. 18, no. 2, pp. 13–18, Dec. 2021.

MLA

Ochoa V., Yonatan F., and Cristian F. Penagos B. “Traveling wave method for analysis of faults in a high voltage transmission line”. Tekhnê, vol. 18, no. 2, Dec. 2021, pp. 13-18, https://revistas.udistrital.edu.co/index.php/tekhne/article/view/19260.

Turabian

Ochoa V., Yonatan F., and Cristian F. Penagos B. “Traveling wave method for analysis of faults in a high voltage transmission line”. Tekhnê 18, no. 2 (December 24, 2021): 13–18. Accessed July 17, 2024. https://revistas.udistrital.edu.co/index.php/tekhne/article/view/19260.

Vancouver

1.
Ochoa V. YF, Penagos B. CF. Traveling wave method for analysis of faults in a high voltage transmission line. Tekhnê [Internet]. 2021 Dec. 24 [cited 2024 Jul. 17];18(2):13-8. Available from: https://revistas.udistrital.edu.co/index.php/tekhne/article/view/19260

Download Citation

Visitas

77

Downloads

Download data is not yet available.
Loading...