Planning of power distribution networks in densely populated cities. Through distributed generation and capacitive compensators

Planeamiento de redes eléctricas en ciudades densamente pobladas. Con generación distribuida y compensación capacitiva

Palabras clave: power distribution networks, planning, multi-stage planning, distributed generation, capacitive compensation, optimization (en_US)
Palabras clave: redes eléctricas de distribución, planeamiento, planeación multietapa, generación distribuida, compensación capacitiva, optimización (es_ES)

Resumen (en_US)

This paper analyses different options that can be used to solve the problem of the planning of power distribution networks by including capacitive compensation and distributed generation. The methodology for planning aims to determine the size of the units, the bus where the units have to be located, and the year in which investments should be made, in order to minimize the total energy losses on the network during the planning period. The work analyses four different cases: planning using neither capacitive compensation (SC) nor distributed generation (DG), planning using only SC, planning using only DG, and planning using reactive compensation and distributed generation simultaneously. Results show that simultaneous use of SC and DG reduce the total energy losses and improve the voltage profiles on the network, so good results for the planning are obtained.

Resumen (es_ES)

Este artículo analiza diferentes opciones para realizar planeamiento de redes eléctricas de distribución en zonas con gran densidad de población a través del uso de generación distribuida y compensación capacitiva. La metodología de planificación permite determinar el tamaño de la unidad a instalar, el nodo en que debe ser ubicada y el año en que se debe hacer la inversión, con el fin de minimizar las pérdidas de energía durante el periodo de planificación. El estudio evalúa cuatro casos que son: planificación sin compensación capacitiva (SC) y sin  generación distribuida (DG),  planificación usando SC, planificación usando DG, y planificación usando los dos elementos simultáneamente. Los resultados muestran que el uso simultáneo de SC y DG disminuye las pérdidas totales de energía y mejora los perfiles de tensión en los nodos de la red, con  lo cual se obtienen muy buenos resultados en el planeamiento.

Descargas

La descarga de datos todavía no está disponible.

Referencias

[1] A. Bedawy, N. Yorino, and K. Mahmoud, “Management of voltage regulators in unbalanced distribution networks using voltage/tap sensitivity analysis,” in Proceedings of 2018 International Conference on Innovative Trends in Computer Engineering, ITCE 2018, vol. 2018-March, pp. 363–367. https://doi.org/10.1109/itce.2018.8316651

[2] J. Lee and G. H. Kim, “Comparison analysis of the voltage variation ranges for distribution networks,” in 2017 IEEE International Conference on Environment and Electrical Engineering and 2017 IEEE Industrial and Commercial Power Systems Europe (EEEIC / I&CPS Europe), 2017, pp. 1–3. https://doi.org/10.1109/eeeic.2017.7977500

[3] I. Bilibin, F. Capitanescu, and J. Sachau, “Overloads management in active radial distribution systems: An optimization approach including network switching,” in 2013 IEEE Grenoble Conference, 2013, pp. 1–5. https://doi.org/10.1109/ptc.2013.6652327

[4] S. Kumar, C. K. Faizan ur Rehman, S. A. Shaikh, and A. A. Sahito, “Voltage improvement and power loss reduction through capacitors in utility network,” in 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), 2018, pp. 1–5. https://doi.org/10.1109/icomet.2018.8346426

[5] R. Bansal and S. K. Gupta, “TCDFs based congestion management using TCSC,” in 2012 IEEE Fifth Power India Conference, 2012, pp. 1–4. https://doi.org/10.1109/poweri.2012.6479528

[6] A. Uchida, S. Watanabe, and S. Iwamoto, “A Voltage Control Strategy for Distribution Networks with Dispersed Generations,” in 2007 IEEE Power Engineering Society General Meeting, 2007, pp. 1–6. https://doi.org/10.1109/pes.2007.385929

[7] S. Abagiu, I. Lepadat, and E. Helerea, “Solutions for energy losses reduction in power networks with renewable energy sources,” in 2016 International Conference on Applied and Theoretical Electricity (ICATE), 2016, pp. 1–6. https://doi.org/10.1109/icate.2016.7754635

[8] L. I. Dulău, M. Abrudean, and D. Bică, “Optimal Location of a Distributed Generator for Power Losses Improvement,” Procedia Technol., vol. 22, pp. 734–739, Jan. 2016. https://doi.org/10.1016/j.protcy.2016.01.032

[9] R. Viral and D. K. Khatod, “An analytical approach for sizing and siting of DGs in balanced radial distribution networks for loss minimization,” Int. J. Electr. Power Energy Syst., vol. 67, pp. 191–201, May 2015. https://doi.org/10.1016/j.ijepes.2014.11.017

[10] N. Acharya, P. Mahat, and N. Mithulananthan, “An analytical approach for DG allocation in primary distribution network,” Int. J. Electr. Power Energy Syst., vol. 28, no. 10, pp. 669–678, Dec. 2006. https://doi.org/10.1016/j.ijepes.2006.02.013

[11] T. Gözel and M. H. Hocaoglu, “An analytical method for the sizing and siting of distributed generators in radial systems,” Electr. Power Syst. Res., vol. 79, no. 6, pp. 912–918, Jun. 2009. https://doi.org/10.1016/j.epsr.2008.12.007

[12] A. Y. Abdelaziz, E. S. Ali, and S. M. Abd Elazim, “Optimal sizing and locations of capacitors in radial distribution systems via flower pollination optimization algorithm and power loss index,” Eng. Sci. Technol. an Int. J., vol. 19, no. 1, pp. 610–618, Mar. 2016. https://doi.org/10.1016/j.jestch.2015.09.002

[13] H. Doagou-Mojarrad, G. B. Gharehpetian, H. Rastegar, and J. Olamaei, “Optimal placement and sizing of DG (distributed generation) units in distribution networks by novel hybrid evolutionary algorithm,” Energy, vol. 54, pp. 129–138, Jun. 2013. https://doi.org/10.1016/j.energy.2013.01.043

[14] A. M. Bouzid, J. M. Guerrero, A. Cheriti, M. Bouhamida, P. Sicard, and M. Benghanem, “A survey on control of electric power distributed generation systems for microgrid applications,” Renew. Sustain. Energy Rev., vol. 44, pp. 751–766, Apr. 2015. https://doi.org/10.1016/j.rser.2015.01.016

[15] H. Abdel-mawgoud, S. Kamel, M. Ebeed, and A.-R. Youssef, “Optimal allocation of renewable dg sources in distribution networks considering load growth,” in 2017 Nineteenth International Middle East Power Systems Conference (MEPCON), 2017, pp. 1236–1241. https://doi.org/10.1109/mepcon.2017.8301340

[16] L. Suganthi and A. A. Samuel, “Energy models for demand forecasting—A review,” Renew. Sustain. Energy Rev., vol. 16, no. 2, pp. 1223–1240, Feb. 2012. https://doi.org/10.1016/j.rser.2011.08.014

[17] M. C. Alvarez-Herault, R. Caire, B. Raison, N. Hadjsaid, and W. Bienia, “Optimizing traditional urban network architectures to increase distributed generation connection,” Int. J. Electr. Power Energy Syst., vol. 35, no. 1, pp. 148–157, 2012. https://doi.org/10.1016/j.ijepes.2011.10.007

[18] H. Kuwabara and K. Nara, “Multi-year and multi-state distribution systems expansion planning by multi-stage branch exchange,” IEEE Trans. Power Deliv., vol. 12, no. 1, pp. 457–463, 1997. https://doi.org/10.1109/61.568271

[19] K. Nara, T. Satoh, K. Kuwabara, K. Aoki, M. Kitagawa, and T. Ishihara, “Distribution Systems Expansion Planning by Multi-Stage Branch Exchange,” Trans. Power Syst., vol. 7, no. 1, pp. 208–214, 1992. https://doi.org/10.1109/59.141705
Cómo citar
[1]
J. A. Alarcón Villamil, S. R. Rivera Rodríguez, y F. Santamaria Piedrahita, «Planeamiento de redes eléctricas en ciudades densamente pobladas. Con generación distribuida y compensación capacitiva », Rev. vínculos, vol. 16, n.º 2, nov. 2019.
Publicado: 2019-11-20
Sección
Investigación y Desarrollo

Artículos más leídos del mismo autor/a