Assessment of energy quality impacts for reactive power compensation with capacitor banks and D-STATCOM

Evaluación de los impactos en la calidad de la energía por la compensación de potencia reactiva con bancos de condensadores y D-STATCOM

Palabras clave: Capacitor banks, D-STATCOM, power factor correction, energy quality, Total Harmonic Distortion (en_US)
Palabras clave: Bancos de capacitores, D-STATCOM, corrección del factor de potencia, calidad de la energía, distorsión armónica total (es_ES)

Resumen (en_US)

This paper presents an assessment of capacitor banks and Distribution Static Compensator (D-STATCOM) with respect to their impact on energy quality. Tests were done with capacitor banks built with electrolytic capacitors commonly used in industrial applications and a D-STATCOM. Experimental tests were performed for power factor correction in order to reduce the reactive power demanded from the electrical grid for inductive-resistive loads. For comparative purposes, the control of the D-STATCOM was set to operate with similar compensation conditions to that of the capacitor banks. Results show that under the same test conditions capacitor banks produce higher Total Harmonic Distortion (THD) than D-STATCOM.

Resumen (es_ES)

Este artículo presenta una evaluación de los bancos de capacitores y el Compensador Estático de Distribución (D-STATCOM) con respecto a su impacto en la calidad de la energía. Las pruebas fueron hechas con bancos de capacitores construidos con capacitores electrolíticos comúnmente usados en aplicaciones industriales y un D-STATCOM. Las pruebas experimentales fueron realizadas para corrección del factor de potencia, con el fin de reducir la potencia reactiva demandada por la red eléctrica con cargas resistivo-inductivas. Por propósitos comparativos, el control del D-STATCOM se programó para operar en similares condiciones de compensación respecto al banco de capacitores. Los resultados muestran que, bajo las mismas condiciones de prueba, los bancos de capacitores producen mayor Distorsión Armónica Total que el D-STATCOM.

Descargas

La descarga de datos todavía no está disponible.

Referencias

[1] M. L. Baughman and S. N. Siddiqi, “Real-time pricing of reactive power: theory and case study results,” IEEE Trans. Power Syst., vol. 6, no. 1, pp. 23–29, Feb. 1991. https://doi.org/10.1109/59.131043

[2] D. Andrews, M. T. Bishop, and J. F. Witte, “Harmonic measurements, analysis, and power factor correction in a modern steel manufacturing facility,” IEEE Trans. Ind. Appl., vol. 32, no. 3, pp. 617–624, May 1996. https://doi.org/10.1109/28.502174

[3] S. V. Berg, J. Adams, and B. Niekum, “Power factors and the efficient pricing and production of reactive power,” Energy J., vol. 4, pp. 93–102, 1983.

[4] H. Moreno, S. Plumel, and P. Bastard, “Assessing the value of reactive power service using OPF of reactive power,” in 2005 IEEE Russia Power Tech, 2005, pp. 1–6. https://doi.org/10.1109/ptc.2005.4524430

[5] Y. Varetsky and Z. Hanzelka, “Capacitor bank impact on harmonic filters operation in power supply system,” in 2009 10th International Conference on Electrical Power Quality and Utilisation, 2009, pp. 1–4. https://doi.org/10.1109/epqu.2009.5318826

[6] J. H. Han, M. Y. Jang, G. B. Lee, B. S. Jang, and Y. A. Kwon, “Improved Performance of Sensorless Induction Motor Using Reactive Power,” in SICE Annual Conference 2007, 2007, pp. 637–642. https://doi.org/10.1109/sice.2007.4421060

[7] J. Benitez, “Application of capacitors for power factor correction of industrial electrical distribution systems,” in [1992] Record of Conference Papers Industry Applications Society 39th Annual Petroleum and Chemical Industry Conference, 1992, pp. 77–86. https://doi.org/10.1109/pcicon.1992.229323

[8] T. E. Grebe, “Application of distribution system capacitor banks and their impact on power quality,” in 1995 Rural Electric Power Conference, 1995, p. C3/1-C3/6. https://doi.org/10.1109/repcon.1995.470933

[9] Z. Jianguo, S. Qiuye, Z. Huaguang, and Z. Yan, “Load balancing and reactive power compensation based on capacitor banks shunt compensation in low voltage distribution networks,” in Proceedings of the 31st Chinese Control Conference, 2012, pp. 6681–6686.

[10] M. A. S. Masoum, M. Ladjevardi, A. Jafarian, and E. F. Fuchs, “Optimal placement, replacement and sizing of capacitor Banks in distorted distribution networks by genetic algorithms,” IEEE Trans. Power Deliv., vol. 19, no. 4, pp. 1794–1801, Oct. 2004. https://doi.org/10.1109/tpwrd.2004.835438

[11] E. F. Fuchs and M. A. S. Masoum, Eds., “Chapter 10 - Optimal Placement and Sizing of Shunt Capacitor Banks in the Presence of Harmonics,” in Power Quality in Power Systems and Electrical Machines, Burlington: Academic Press, 2008, pp. 397–441. https://doi.org/10.1016/b978-012369536-9.50011-5

[12] J. Dixon, L. Moran, J. Rodriguez, and R. Domke, “Reactive Power Compensation Technologies: State-of-the-Art Review,” Proc. IEEE, vol. 93, no. 12, pp. 2144–2164, Dec. 2005. https://doi.org/10.1109/jproc.2005.859937

[13] R. Redl and L. Balogh, “RMS, DC, peak, and harmonic currents in high-frequency power-factor correctors with capacitive energy storage,” in [Proceedings] APEC ’92 Seventh Annual Applied Power Electronics Conference and Exposition, 1992, pp. 533–540. https://doi.org/10.1109/apec.1992.228364

[14] W. Xu, X. Liu, and Y. Liu, “Assessment of harmonic resonance potential for shunt capacitor applications,” Electr. Power Syst. Res., vol. 57, no. 2, pp. 97–104, 2001. https://doi.org/10.1016/s0378-7796(01)00092-x

[15] J. Wang et al., “An Improved Hybrid Modulation Method for the Single-Phase H6 Inverter With Reactive Power Compensation,” IEEE Trans. Power Electron., vol. 33, no. 9, pp. 7674–7683, Sep. 2018. https://doi.org/10.1109/tpel.2017.2768572

[16] P. E. Melin et al., “Study of Reactive Power Compensation Capabilities and LC Filter Design for a Three-Phase Current-Source STATCOM,” in 2018 IEEE International Conference on Automation/XXIII Congress of the Chilean Association of Automatic Control (ICA-ACCA), 2018, pp. 1–5. https://doi.org/10.1109/ica-acca.2018.8609717

[17] W. Rohouma, R. S. Balog, A. A. Peerzada, and M. M. Begovic, “Reactive Power Compensation of Time-Varying Load Using Capacitor-less D-STATCOM,” in 2019 10th International Conference on Power Electronics and ECCE Asia (ICPE 2019 - ECCE Asia), 2019, pp. 2296–2301.

[18] O. K. Shinde and V. R. S. V. B. Pulavarthi, “STATCOM converters and control: A review,” in 2017 International Conference on Data Management, Analytics and Innovation (ICDMAI), 2017, pp. 145–151. https://doi.org/10.1109/icdmai.2017.8073500

[19] A. K. Koshti and M. N. Rao, “A brief review on multilevel inverter topologies,” in 2017 International Conference on Data Management, Analytics and Innovation (ICDMAI), 2017, pp. 187–193. https://doi.org/10.1109/icdmai.2017.8073508

[20] P. Chaudhari et al., “Design and implementation of STATCOM for reactive power compensation and voltage fluctuation mitigation in microgrid,” in 2015 IEEE International Conference on Signal Processing, Informatics, Communication and Energy Systems (SPICES), 2015, pp. 1–5. https://doi.org/10.1109/spices.2015.7091541

[21] M. T. L. Gayatri, Alivelu. M. Parimi, and A. V. Pavan Kumar, “A review of reactive power compensation techniques in microgrids,” Renew. Sustain. Energy Rev., vol. 81, pp. 1030–1036, Jan. 2018. https://doi.org/10.1016/j.rser.2017.08.006

[22] E. T. McAdams, A. Lackermeier, J. A. McLaughlin, D. Macken, and J. Jossinet, “The linear and non-linear electrical properties of the electrode-electrolyte interface,” Biosens. Bioelectron., vol. 10, no. 1, pp. 67–74, 1995. https://doi.org/10.1016/0956-5663(95)96795-z

[23] C. S. Lim, K. H. Teoh, C.-W. Liew, and S. Ramesh, “Capacitive behavior studies on electrical double layer capacitor using poly (vinyl alcohol)–lithium perchlorate based polymer electrolyte incorporated with TiO2,” Mater. Chem. Phys., vol. 143, no. 2, pp. 661–667, 2014. https://doi.org/10.1016/j.matchemphys.2013.09.051

[24] L. A. Geddes, “Historical evolution of circuit models for the electrode-electrolyte interface,” Ann. Biomed. Eng., vol. 25, no. 1, p. 1, Jan. 1997.

[25] C. C. Dubilier, "Aluminum Electrolytic Capacitor Application Guide". https://www.cde.com/resources/catalogs/AEappGUIDE.pdf

[26] S. Lin et al., “Robust Optimal Allocation of Decentralized Reactive Power Compensation in Three-Phase Four-Wire Low-Voltage Distribution Networks Considering the Uncertainty of Photovoltaic Generation,” Energies, vol. 12, no. 13, p. 2479, Jan. 2019.

[27] S. Helm, E. G. Otto, I. Hauer, and M. Wolter, “Intelligent decentralized approach for reactive power compensation by VSC converter,” in 2018 53rd International Universities Power Engineering Conference (UPEC), 2018, pp. 1–6. https://doi.org/10.1109/upec.2018.8541906

[28] O. Gandhi, D. Srinivasan, C. D. Rodríguez-Gallegos, and T. Reindl, “Competitiveness of reactive power compensation using PV inverter in distribution system,” in 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), 2017, pp. 1–6. https://doi.org/10.1109/isgteurope.2017.8260238
Cómo citar
[1]
S. Benavides Córdoba, J. R. Ortiz Castrillón, Y. A. Gutiérrez Villa, N. Muñoz Galeano, J. B. Cano Quintero, y J. M. López Lezama, «Evaluación de los impactos en la calidad de la energía por la compensación de potencia reactiva con bancos de condensadores y D-STATCOM», Rev. vínculos, vol. 16, n.º 2, dic. 2019.
Publicado: 2019-12-19
Sección
Investigación y Desarrollo