DOI:
https://doi.org/10.14483/2322939X.18620Publicado:
2020-12-10Número:
Vol. 17 Núm. 2 (2020)Sección:
Investigación y DesarrolloGenerador lineal para un generador eólico de baja potencia, selección, diseño y simulación en comsol multiphysic
Linear generator for a low power wind generator, selection, design and simulation in comsol multiphysic
Palabras clave:
Electromagnetismo, Elementos Finitos, Flujo Magnético, Generador Lineal, Imanes Permanentes, Simulación (es).Palabras clave:
Electromagnetism, Finite elements, Linear generator, Magnetic flux, Permanent Magnets, Simulation (en).Descargas
Resumen (es)
En el presente documento se expone un estudio comparativo de tres topologías propuestas de generador lineal, a partir de la recopilación de los estudios consignados en la literatura científica, son modeladas por medio de simulaciones en 2D en COMSOL y se analizan los resultados obtenidos tomando como indicador de desempeño la potencia de salida y el comportamiento bajo carga, como contribución al proyecto de investigación TOPOLOGÍAS DE GENERADOR EÓLICO DE BAJA POTENCIA. Los resultados obtenidos son satisfactorios resaltando la primera de las topologías propuestas, que presenta el mejor comportamiento bajo carga y un valor adecuado de potencia de salida para aplicaciones de baja potencia. Gracias al empleo de herramientas computacionales se evita la construcción de varios prototipos, lo que da la posibilidad de generar un banco virtual de pruebas para futuros desarrollos en esta área y lograr un avance en la investigación de estos dispositivos en Colombia.
Resumen (en)
This document presents a comparative study of three proposed linear generator topologies, based on the compilation of studies reported in the scientific literature, they are modeled by means of 2D simulations in COMSOL and the results obtained are analyzed taking output power and behavior under load as a performance indicator, as a contribution to the research project TOPOLOGIES OF LOW POWER WIND GENERATOR. The results obtained are satisfactory, highlighting the first of the proposed topologies, which presents the best behavior under load and an adequate output power value for low power applications. Thanks to the use of computational tools, the construction of several prototypes is avoided, which gives the possibility of generating a virtual test bench for future developments in this area and achieving a breakthrough in the research of these devices in Colombia.
Referencias
L. Wei, T. Nakamura and K. Imai, “Development and Optimization of Low-Speed and High-Efficiency Permanent Magnet Generator for Micro Hydro-Electrical Generation System”, ELSEVIER, Renewable Energy, Kyoto University, Japan, 2019. https://doi.org/10.1016/j.renene.2019.09.049
M. Ardestani, N. Arish and H. Yaghobi, “A New HTS Dual Stator Linear Permanent Magnet Vernier Machine with Halbach Array for Wave Energy Conversion”, ELSEVIER, Physyca C: Superconductivity and its Applications, Semman University, Iran, 2019. https://doi.org/10.1016/j.physc.2019.1353593
P. Khatri and X. Wang, “Comprehensive Review of a Linear electrical Generator for Ocean Wave Energy Conversion”, IET Renewable Power Generation, IET, Vol. 14, Lss. 6, pp. 949-958, February, 2020. doi: 10.1049/iet-rpg.2019.0624
O. S. Muñoz Muñoz, “Dimensionamiento electromagnético de un Generador Lineal para la Conversión de Energía Undimotriz de Acuerdo a las Características del Océano Pacífico Colombiano”, trabajo de fin de grado, Universidad del Valle, Colombia, 2020.
C. García Saiz, “Diseño, Dimensionado y Simulación de un Generador Lineal para el Desarrollo de una Boya de Generación de Energía Undimotriz”, trabajo de fin de grado, Universidad de Cantabria, España, 2015. https://repositorio.unican.es/xmlui/handle/10902/7332
A. García Villalmanzo, “Diseño de un Motor Lineal de Reluctancia Autoconmutado con Imanes Permanentes”, trabajo de fin de grado, Universidad Rovira I Virgili, Tarragona, 2017. http://deeea.urv.cat/public/PROPOSTES/pub/pdf/2459pub.pdf
A. Shiri and A. Shoulaie, “End Effect Braking Force Reduction in High-Speed Single-Sided Linear Induction Machine”, ELSEVIER, Energy Conversion and Management, Iran University of Science and Technology, Iran, 2012. https://doi.org/10.1016/j.enconman.2011.11.014
X. Chen, S. Zheng, J. Li, G. T. Ma and F. Yen, “A Linear Induction Motor with a Coated Conductor Superconducting Secondary”, ELSEVIER, Physyca C: Superconductivity and its Applications, Southwest Jiaotong University, China, 2017. https://doi.org/10.1016/j.physc.2018.04.002
SS. Rathore, S. Mishra, M. K. Paswan and Sanjay, “A Review on Design and Development of Free Piston Linear Generators in Hybrid Vehicles”, IOP Conference Series: Materials Science and Engineering, ICCEMME, India, 2019. doi: 10.1088/1757-899X/691/1/012053
Y. Gao, S. Shao, H. Zou, M. Tang, H. Xu and C. Tian, “A Fully Floating System for Wave Energy Converter with Direct-Driven Linear Generator”, ELSEVIER, Energy, Beijing, China, 2015. https://doi.org/10.1016/j.energy.2015.11.072
J. F. Fortes, L. M. Ferraz and I. E. Chabu, “Optimized Double Sided Linear Generator for Wave Energy in Sao Paulo’s Coast”, 7th International Conference on Ocean Energy (ICOE), Polytechnic School of University of Sao Paulo, France, 2018. https://www.icoe-conference.com/publication/optimized-double-sided-linear-generator-for-wave-energy-in-sao-paulo-s-coast/
V. Boscaino, G. Cipriani, V. Di Dio, V. Franzitta and M. Trapanense, “Experimental Test and Simulations on a Linear Generator-Based Prototype of a Wave Energy Conversion System Designed with a Reliability-Oriented Approach”, MDPI, Sustainability, University or Palermo, 2017. doi: 10.3390/su9010098
O. Farrok, M. R. Islam, Y. G. Guo and J. G. Zhu, “Design and Analysis of a Novel Lightweight Translator Permanent Magnet Linear Generator for Oceanic Wave Energy Conversion”, IEEE, 2015. doi: 10.1109/TMAG.2017.2713770
K. Cruz, F. Dator, J. Ong, N. Bumanlag and M. C. Pacis, “Harnessing of Wave Energy using Axially Magnetized Linear Generator with Data Logger using Gizduino Microcontroller”, IOP Conference Series: Journal of Physics: Conference Series, CEEPE, Mapua University, Philippines, 2019. doi: 10.1088/1742-6596/1304/1/012013
A. Tapia-Hernández, M. Ponce-Silva, N. Mondragón-Escamilla y L. Hernández-González, “Impacto de la Geometría en el Efecto Fin de Generadores Lineales”, Información Tecnológica, Vol.27, No. 4, pp. 133-138, México, Agosto, 2016. http://dx.doi.org/10.4067/S0718-07642016000400014
P. Naderi, M. Heidary and M. Vahedi, “Performance Analysis of Ladder-Secondary-Linear Induction Motor with Two Different Secondary Types using Magnetic Equivalent Circuit”, ELSEVIER, ISA Transactions, Shahid Beheshti University, Iran, 2020. https://doi.org/10.1016/j.isatra.2020.03.013
Y. Xu, X. Xue, Y. Wang and M. Ai, “Performance Characteristics of Compressed Air-Driven-Free-Piston Linear Generator (FPLG) System – A Simulation Study”, ELSEVIER, Applied Thermal Engineering, 2019. https://doi.org/10.1016/j.applthermaleng.2019.114013
J. G. Mora Santos, E. Rivas Trujillo and H. Montana Quintero, “Comparative Study of a Linear Permanent Magnet Generator of Low-Power through the Finite Elements Method”, International Journal of Mechanical and Production Engineering Research and Development, IJMPERD, Colombia, 2020.
J. Xi, Z. Dong, P. Liu and H. Ding, “Modeling and Identification of Iron-less PMLSM End Effects for Reducing Ultra-Low-Velocity Fluctuations of Ultra-precision Air Bearing Linear Motion Stage”, ELSEVIER, Precision Engineering, Shanghai Jiaotong University, China, 2017. https://doi.org/10.1016/j.precisioneng.2017.01.016
X. Luo, C. Zhang, S. Wang, E. Zio and X. Wang, “Modeling and Analysis of Mover Gaps in Tubular Moving-Magnet Linear Oscillating Motors”, ELSEVIER, Chinese Journal of Aeronautics, Chinese Society of Aeronautics ans Astronautics & Beihang University, China, 2017. https://doi.org/10.1016/j.cja.2017.11.008
K. S. Rama Rao, T. Sunderan and M. Ref’at Adiris, “Performance and Design Optimization of Two Model Based Wave Energy Permanent Magnet Linear Generators”, ELSEVIER, Renewable Energy, 2016. https://doi.org/10.1016/j.renene.2016.07.019
M. F. M Naafi, T. Ibrahim, N. M. Nor and M. A. Firdaus bin M. Hamim, “Design and Modelling of a Portable Pico Linear Generator for Wave Energy Conversion System”, Applied Mechanics and Materials, Vol. 785, pp. 300-304, Malaysia, 2015. https://doi.org/10.4028/www.scientific.net/AMM.785.300
W. Rentería Palacios, “Diseño y Evaluación Electromagnética de un Motor Síncrono Lineal de Imanes Permanentes en Disposición Halbach”, trabajo de fin de máster, Universidad Autónoma de Occidente, Colombia, 2018. http://hdl.handle.net/10614/10454
J. Kim, J. Y. Kim and J. B. Park, “Design and Optimization of a 8kW Linear Generator for a Direct-Drive Point Absorber”, IEEE, Yonsei University, Seoul, Korea, 2013. doi: 10.23919/OCEANS.2013.6741125
J. C. Martínez-Quintero, E. P. Estupiñán-Cuesta, V. . Rodríguez-Ortega, "Raspberry PI 3 RF signal generation system", Visión Electrónica, vol. 13, no. 2, pp. 294–299, 2019. https://doi.org/10.14483/22484728.15160
L. Huang, J. Liu, H. Yu, R. Qu, H. Chen and H. Fang, “Winding Configuration and Performance Investigation of a Tubular Superconducting Flux-Switching Linear Generator”, IEEE, Transactions on Applied Superconductivity, Vol. 25, No. 3, 2015. doi: 10.1109/TASC.2014.2382877
X. Liu, H. Yu, Z. Shi, T. Xia and M. Hu, “Electromagnetic-Fluid-Thermal Field Calculation and Analysis of a Permanent Magnet Linear Motor”, ELSEVIER, Applied Thermal engineering, Southeast University, China, 2017. https://doi.org/10.1016/j.applthermaleng.2017.10.066
X. Chen, S. Zheng, J. Li, G. T. Ma and F. Yen, “A Linear Induction Motor with a Coated Conductor Superconducting Secondary”, ELSEVIER, Physyca C: Superconductivity and its Applications, Southwest Jiaotong University, China, 2017. https://doi.org/10.1016/j.physc.2018.04.002
Cómo citar
IEEE
ACM
ACS
APA
ABNT
Chicago
Harvard
MLA
Turabian
Vancouver
Descargar cita
Visitas
Descargas
Licencia
Derechos de autor 2020 Revista vínculos
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Este obra está bajo una licencia Creative Commons Atribución 4.0