Publicado:

2022-10-25

Número:

Vol. 19 Núm. 2 (2022)

Sección:

Actualidad Tecnológica

Estructuración bibliográfica acerca de Multiview learning para clasificación de imágenes

Bibliographic structure about Multiview learning for image classification

Autores/as

  • Nancy Yaneth Gélvez-García Universidad Distrital Francisco José de Caldas
  • Kevin C. Díaz-M Koncilia S.A.S
  • Carlos Enrique Montenegro-Marín Universidad Distrital Francisco José de Caldas
  • Paulo Alonso Gaona-García Universidad Distrital Francisco José de Caldas

Palabras clave:

Análisis bibliométrico, Clasificación de imágenes, Estado del arte, Multiview Learning (es).

Palabras clave:

Bibliometric analysis, Multiview Learning (en).

Descargas

Resumen (es)

En el presente artículo se muestra una revisión bibliográfica de la literatura académica relacionada con “Clasificación de imágenes con Multiview learning” junto con un análisis de la información presente en cada una de las fuentes bibliográficas revisadas, con la finalidad de proponer una base conceptual, teórica y estadística para trabajos de investigación que desarrollen o contengan esta temática. De igual manera se presenta brevemente la forma en la que se aborda el MVL en los diferentes escenarios de aplicación tanto académicos como prácticos.

Resumen (en)

This article shows a bibliographic review of the academic literature related to "Image classification with Multiview learning" together with an analysis of the information present in each of the reviewed bibliographic sources, to propose a conceptual basis, theoretical and statistical for research works that develop or contain this theme. In the same way, the way in which the MVL is approached in the different application scenarios, both academic and practical, is briefly presented.

Referencias

J. Zhao, X. Xijiong, X. Xin y S. Shiliang, “Multi-view learning overview: Recent progress and new challenges and new challenges” Information Fusion, pp. 43-54, 2017. https://doi.org/10.1016/j.inffus.2017.02.007

Ministerio de Ciencias de Colombia, “Modelo de clasificación de revistas científicas nacionales” 2021. [En línea]. Available: https://minciencias.gov.co/pagina/modelo-de-clasificacion-de-revistas-cientificas-nacionales

Scimago Lab, “Scimago Journal & Country Rank” 10 07 2021. [En línea]. Available: https://www.scimagojr.com/

L. Zhang, H. Shum, L. Liu, G. Guo y L. Shao, “Multiview discriminative marginal metric learning for makeup face verification”, Neurocomputing, pp. 339-350, 2019. https://doi.org/10.1016/j.neucom.2018.12.003

S. Sun, Y. Liu y L. Mao, “Multi-view learning for visual violence recognition with maximum entropy discrimination and deep features discrimination and deep features”, Information Fusion, pp. 43-53, 2018. https://doi.org/10.1016/j.inffus.2018.10.004

C. Xu, T. Dacheng y C. Xu, “A Survey on Multi-view Learning” arXiv.org, 2013.

C. Zhang, J. Cheng y Q. Tian, “Multi-View Image Classification with Visual, Semantic and View Consistency”, IEEE TRANSACTIONS ON IMAGE PROCESSING, vol. 29, pp. 617 - 627, 2019. https://doi.org/10.1109/TIP.2019.2934576

S. Zhu, X. Sun y D. Jin, “Multi-view semi-supervised learning for image classification”, Neurocomputing, pp. 136-142, 2016. https://doi.org/10.1016/j.neucom.2016.02.072

X. Zhang, J. Cheng, C. Xu, H. Lu y S. Ma, “Multi-view multi-label active learning for image classification”, 2009 IEEE International Conference on Multimedia and Expo, 03 07 2009.

M. Liu, Y. Luo, D. Tao, C. Xu y Y. Wen, “Low-Rank Multi-View Learning in Matrix Completion for Multi-Label Image Classification”, Twenty-Ninth AAAI Conference on Artificial Intelligence, vol. 29, nº 1, 2015. https://doi.org/10.1609/aaai.v29i1.9547

H. Su, S. Maji, E. Kalogerakis y E. L. Miller, “Multi-view Convolutional Neural Networks for 3D Shape Recognition”, arXiv, 2015. https://doi.org/10.1109/ICCV.2015.114

M. Seeland y P. Mäder, “Multi-view classification with convolutional neural networks” PLOS ONE, 2020. https://doi.org/10.1371/journal.pone.0245230

K. Jia, J. Lin, M. Tan y D. Tao, “Deep Multi-View Learning using Neuron-Wise Correlation-Maximizing Regularizers”, 2019. https://doi.org/10.1109/TIP.2019.2912356

Y. Tuozhong, W. Wenfeng y G. Yuhong, “A Deep Multiview Active Learning for Large-Scale Image Classification”, Mathematical Problems in Engineering, 2020. https://doi.org/10.1155/2020/6639503

L. Sun, J. Wang, Z. Hu, Y. Xu y Z. Cui, “Multi-View Convolutional Neural Networks for Mammographic Image Classification” 2019. https://doi.org/10.1109/ACCESS.2019.2939167

M. Ángel Barrera Pérez, N. Y. Serrato Losada, E. Rojas Sánchez, G. Mancilla Gaona, “State of the art in software defined networking (SDN)”, Visión electrónica, vol. 13, no. 1, pp. 178–194, 2019. https://doi.org/10.14483/22484728.14424

S. Sun, J. Shawe-Taylor y L. Mao, “PAC-Bayes analysis of multi-view learning”, Information Fusion, pp. 117-131, 2016. https://doi.org/10.1016/j.inffus.2016.09.008

Z. Xu y S. Sun, “Multi-source Transfer Learning with Multi-view Adaboost”, de International Conference on Neural Information Processing, Doha, Qatar, 2012. https://doi.org/10.1007/978-3-642-34487-9_41

Z. Ding, M. Shao y Y. Fu, “Robust Multi-view Representation: A Unified Perspective from Multi-view Learning to Domain Adaption”, de Proceedings of the 27th International Joint Conference on Artificial Intelligence, 2018. https://doi.org/10.24963/ijcai.2018/767

F. Wu, X. Y. Jing, X. You, D. Yue, R. Hu y J. Y. Yang, “Multi-view low-rank dictionary learning for image classification,” Pattern Recognition, pp. 143-154, 2015. https://doi.org/10.1016/j.patcog.2015.08.012

Y.-M. Xu, C.-D. Wang y J.-H. Lai, “Weighted Multi-view Clustering with Feature Selection”, Pattern Recognition, pp. 25-35, 2015. https://doi.org/10.1016/j.patcog.2015.12.007

D. Yu, S. Ji, J. Liu y S. Wei, “Automatic 3D building reconstruction from multi-view aerial images with deep learning”, ISPRS Journal of Photogrammetry and Remote Sensing, pp. 155-170, 2021. https://doi.org/10.1016/j.isprsjprs.2020.11.011

D. Wu, C. Zhang, L. Ji, R. Ran, H. Wu y Y. Xu, “Forest Fire Recognition Based on Feature Extraction from Multi-View Images”, Traitement du Signal, pp. 775-783, 2021. https://doi.org/10.18280/ts.380324

N. Khan, M. Kim y J. Tompkin, “Differentiable Diffusion for Dense Depth Estimation from Multi-view Images”, arXiv, 2021. https://doi.org/10.1109/CVPR46437.2021.00880

X. Yan, S. Hu, Y. Mao, Y. Ye y H. Yu, “Deep multi-view learning methods: A review”, Neurocomputing, pp. 106-129, 2021. https://doi.org/10.1016/j.neucom.2021.03.090

J. N. Oliver, “Multi-View Imaging: Depth Estimation and Enhancement", 2019. [En línea]. Available: https://dspace.uib.es/xmlui/handle/11201/150580

J. García, A. Gardel, I. Bravo y J. L. Lázaro, “Multiple View Oriented Matching Algorithm for People Reidentification”, IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, pp. 1841 - 1851, 2014. https://doi.org/10.1109/TII.2014.2330976

B. Liu, A. Yu, X. Yu, R. Wang, K. Gao y W. Guo, “Deep Multiview Learning for Hyperspectral Image Classification”, IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, pp. 7758 - 7772, 2021. https://doi.org/10.1109/TGRS.2020.3034133

Y. Zhao, Y.-m. Cheung, X. You, Q. Peng, J. Peng, P. Yuan y Y. Shi, “Hyperspectral Image Classification via Spatial Window-Based Multiview Intact Feature Learning”, IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, pp. 2294 - 2306, 03 03 2021. https://doi.org/10.1109/TGRS.2020.3004858

K. Wong, E. Sinkovskaya, A. Abuhamad y T. Mahmood, “Multiview and Multiclass Image Segmentation using Deep Learning in Fetal Echocardiography” Proceedings of SPIE - The International Society for Optical Engineering, 2021. https://doi.org/10.1117/12.2582191

A. Li, J. Chen, D. Chen y G. Sun, “Multiview Similarity Learning for Robust Visual Clustering” de Computer Vision - ACCV 2020 Workshops: 15th Asian Conference on Computer Vision, Kyoto, Japan, Tokio, 2020. https://doi.org/10.1007/978-3-030-69756-3_12

F. Nie, G. Cai y X. Li, “Multi-View Clustering and Semi-Supervised Classification with Adaptive Neighbours” IEEE Transactions on Knowledge and Data Engineering, pp. 2389 - 2400, 2020. https://doi.org/10.1109/TKDE.2019.2920985

W. Liu y D. Tao, “Multiview Hessian Regularization for Image Annotation” IEEE Transactions on Image Processing, 2019.

D. Li y Y. Tian, “Multi-view metric learning for multi-instance image classification” Expert Systems with Applications, 2021.

F. Nie, G. Cai, J. Li y X. Li, “Auto-Weighted Multi-View Learning for Image Clustering and Semi-Supervised Classification” IEEE Transactions on Image Processing, pp. 1501 - 1511, 2018. https://doi.org/10.1109/TIP.2017.2754939

C. Du, C. Du, L. Huang y H. He, “Reconstructing Perceived Images from Human Brain Activities with Bayesian Deep Multiview Learning” IEEE Transactions on Neural Networks and Learning Systems, pp. 1-14, 2018.

M. Mayo y E. Frank, “Experiments with Multi-view Multi-instance Learning for Supervised Image Classification”, 2011.

C. Yan, B. Gong, Y. Wei y Y. Gao, “Deep Multi-View Enhancement Hashing for Image Retrieval”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2020.

J. Yu, J. Li, Z. Yu y Q. Huang, “Multimodal Transformer with Multi-View Visual Representation for Image Captioning”, IEEE Transactions on Circuits and Systems for Video Technology, p. 4467-4480, 2020. https://doi.org/10.1109/TCSVT.2019.2947482

Z. Xue, G. Li y Q. Huang, “Joint Multi-View Representation Learning and Image Tagging”, de Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, 2016. https://doi.org/10.1609/aaai.v30i1.10147

J. Li, B. Zhang, G. Lu y D. Zhang, “Generative multi-view and multi-feature learning for classification”, Information Fusion, pp. 215-226, 2019. https://doi.org/10.1016/j.inffus.2018.02.005

Y. Liu, S. Sun y M. Yin, “Multi-view Learning and Deep Learning for Microscopic Neuroblastoma Pathology Image Diagnosis”, de Pacific Rim International Conference on Artificial Intelligence, 2018. https://doi.org/10.1007/978-3-319-97304-3_42

X. Dong, S. Xu, Y. Liu, A. Wang, M. I. Saripan, L. Li, X. Zhang y L. Lu, “Multi-view secondary input collaborative deep learning for lung nodule 3D segmentation”, Cancer imaging, 2020. https://doi.org/10.1186/s40644-020-00331-0

M. Kan, S. Shan y X. Chen, “Multi-view Deep Network for Cross-view Classification”, de 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016. https://doi.org/10.1109/CVPR.2016.524

W. Wang, R. Arora, K. Livescu y J. Bilmes, “On Deep Multi-View Representation Learning: Objectives and Optimization”, de ICML'15: Proceedings of the 32nd International Conference on International Conference on Machine Learning, 2015.

B. Neva Camacho, O. Najar Sánchez, "Comprensión de la lectura crítica con el edublog Leanet", Revista Vínculos, vol. 16, no. 2, pp. 219–231, 2019. https://doi.org/10.14483/2322939X.15750

Z. Zhu, P. Luo, X. Wang y X. Tang, “Multi-View Perceptron: A Deep Model for Learning Face Identity and View Representations”, de NIPS'14: Proceedings of the 27th International Conference on Neural Information Processing Systems, 2015.

M. T. Alam, V. Kumar y A. Kumar, “A Multi-view Convolutional Neural Network Approach for Image Data Classification”, de 2021 International Conference on Communication information and Computing Technology (ICCICT), 2021. https://doi.org/10.1109/ICCICT50803.2021.9509943

X. Wu, Q.-G. Chen, Y. Hu, D. Wang y X. Chang, “Multi-View Multi-Label Learning with View-Specific Information Extraction”, de IJCAI'19: Proceedings of the 28th International Joint Conference on Artificial Intelligence, 2019. https://doi.org/10.24963/ijcai.2019/539

J. Wang, Y. Zheng, J. Song y S. Hou, “Cross-View Representation Learning for Multi-View Logo Classification with Information Bottleneck”, 2021. https://doi.org/10.1145/3474085.3475704

A. Huang, Z. Wang, Y. Zheng, T. Zhao y C.-W. Lin, “Embedding Regularizer Learning for Multi-View Semi-Supervised Classification”, pp. 6997-7011, 2021. https://doi.org/10.1109/TIP.2021.3101917

E. Gómez Luna, D. Fernando Navas, G. Aponte Mayor y L. A. Betancourt Buitrago, “Metodología para la revisión bibliográfica y la gestión de información de temas científicos, a través de su estructuración y sistematización”, Dyna, vol. 81, nº 184, pp. 158-163, 2014. https://doi.org/10.15446/dyna.v81n184.37066

Cómo citar

IEEE

[1]
N. Y. Gélvez-García, K. C. Díaz-M, C. E. Montenegro-Marín, y P. A. Gaona-García, «Estructuración bibliográfica acerca de Multiview learning para clasificación de imágenes», Rev. Vínculos, vol. 19, n.º 2, oct. 2022.

ACM

[1]
Gélvez-García, N.Y. et al. 2022. Estructuración bibliográfica acerca de Multiview learning para clasificación de imágenes. Revista Vínculos. 19, 2 (oct. 2022).

ACS

(1)
Gélvez-García, N. Y.; Díaz-M, K. C.; Montenegro-Marín , C. E.; Gaona-García , P. A. Estructuración bibliográfica acerca de Multiview learning para clasificación de imágenes. Rev. Vínculos 2022, 19.

APA

Gélvez-García, N. Y., Díaz-M, K. C., Montenegro-Marín , C. E., y Gaona-García , P. A. (2022). Estructuración bibliográfica acerca de Multiview learning para clasificación de imágenes. Revista Vínculos, 19(2). https://revistas.udistrital.edu.co/index.php/vinculos/article/view/19926

ABNT

GÉLVEZ-GARCÍA, Nancy Yaneth; DÍAZ-M, Kevin C.; MONTENEGRO-MARÍN , Carlos Enrique; GAONA-GARCÍA , Paulo Alonso. Estructuración bibliográfica acerca de Multiview learning para clasificación de imágenes. Revista Vínculos, [S. l.], v. 19, n. 2, 2022. Disponível em: https://revistas.udistrital.edu.co/index.php/vinculos/article/view/19926. Acesso em: 8 dic. 2024.

Chicago

Gélvez-García, Nancy Yaneth, Kevin C. Díaz-M, Carlos Enrique Montenegro-Marín, y Paulo Alonso Gaona-García. 2022. «Estructuración bibliográfica acerca de Multiview learning para clasificación de imágenes». Revista Vínculos 19 (2). https://revistas.udistrital.edu.co/index.php/vinculos/article/view/19926.

Harvard

Gélvez-García, N. Y. (2022) «Estructuración bibliográfica acerca de Multiview learning para clasificación de imágenes», Revista Vínculos, 19(2). Disponible en: https://revistas.udistrital.edu.co/index.php/vinculos/article/view/19926 (Accedido: 8 diciembre 2024).

MLA

Gélvez-García, Nancy Yaneth, et al. «Estructuración bibliográfica acerca de Multiview learning para clasificación de imágenes». Revista Vínculos, vol. 19, n.º 2, octubre de 2022, https://revistas.udistrital.edu.co/index.php/vinculos/article/view/19926.

Turabian

Gélvez-García, Nancy Yaneth, Kevin C. Díaz-M, Carlos Enrique Montenegro-Marín, y Paulo Alonso Gaona-García. «Estructuración bibliográfica acerca de Multiview learning para clasificación de imágenes». Revista Vínculos 19, no. 2 (octubre 25, 2022). Accedido diciembre 8, 2024. https://revistas.udistrital.edu.co/index.php/vinculos/article/view/19926.

Vancouver

1.
Gélvez-García NY, Díaz-M KC, Montenegro-Marín CE, Gaona-García PA. Estructuración bibliográfica acerca de Multiview learning para clasificación de imágenes. Rev. Vínculos [Internet]. 25 de octubre de 2022 [citado 8 de diciembre de 2024];19(2). Disponible en: https://revistas.udistrital.edu.co/index.php/vinculos/article/view/19926

Descargar cita

Visitas

191

Descargas

Los datos de descargas todavía no están disponibles.
Loading...