DOI:
https://doi.org/10.14483/22484728.11010Publicado:
2015-06-30Número:
Vol. 9 Núm. 1 (2015)Sección:
Visión InvestigadoraDetección de movimiento en tiempo real utilizando flujo óptico
Motion detection in real time using optical flow
Palabras clave:
detección de movimiento, flujo óptico, SIFT, SURF (es).Palabras clave:
motion detection, optical flow, SIFT, SURF (en).Descargas
Resumen (es)
Se muestra la implementación de algoritmos de flujo óptico y
extracción de características para el reconocimiento y detección de objetos en tiempo real de una secuencia de imágenes. Se implementaron algoritmos de flujo óptico y de detección de características SIFT, SURF y un estudio sobre la influencia de los cambios de iluminación en el ambiente de la escena analizando el
funcionamiento y desempeño. Durante los cambios de iluminación se encontró que los puntos de interés entre dos imágenes consecutivas se reducen debido a que los algoritmos de detección no encuentran patrones similares y todos los niveles de intensidad son diferentes. Los resultados experimentales muestran que el algoritmo propuesto es funcional en escenas donde la luminosidad es constante y no es inferior a 1 Lux, se entrega una herramienta útil para sistemas de vigilancia y robótica móvil.
Resumen (en)
This paper shows the implementation the optical flow algorithms
and feature extraction for recognition and objects detection in real time with a sequence of images. The algorithms used are optical flow, SIFT and SURF.
It was conducted a study on the influence of changes in the ambient lighting of the scene examine the functioning and performance of each proposed algorithms. During illumination changes was found that the points of interest between two consecutive images is reduced because detection algorithms are not similar patterns and levels of intensity are different. The experimental results showed that the proposed algorithm is functional in scenes where the brightness is constant and not less than 1 Lux, it provides a useful tool for surveillance systems and mobil robot.
Referencias
Ince, S. and Konrad, J., "Occlusion-Aware Optical Flow Estimation". Image Processing, IEEE Transactions on, vol.17, no.8, pp.1443-1451, aug, 2008, doi: 10.1109/TIP.2008.925381
Wei Shuigen, Chen Zhen, Dong Hua, "Motion Detection Based on Temporal Difference Method and Optical Flow field". Electronic Commerce and Security, 2009. ISECS '09. Second International Symposium on, vol.2, pp.85-88, 24 may, 2009, doi: 10.1109/ISECS.2009.62
Berthold K.P. Horn and Brian G. Schunck, “Determining Optical Flow”. Technical Report. Massachusetts Institute of Technology, Cambridge, MA, USA, 1980.
Synh Viet-Uyen Ha and Jae Wook Jeon, "Readjusting Unstable Regions to Improve the Quality of High Accuracy Optical Flow". Circuits and Systems for Video Technology, IEEE Transactions on, vol.20, no.4, pp.540-547, april, 2010, doi: 10.1109/TCSVT.2010.2041818
Kui Liu, He Yang, Ma, B. and Qian Du, "A joint optical flow and principal component analysis approach for motion detection". Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference on, pp.1178-1181, march, 2010, doi: 10.1109/ICASSP.2010.5495379
Liang Zhang and Xiaomei He, "Fake Shadow Detection Based on SIFT Features Matching". Information Engineering (ICIE), 2010 WASE International Conference on, vol.1, pp.216-220, 14-15, aug, 2010, doi: 10.1109/ICIE.2010.58
Xiong, Bin and Ding, Xiaoqing, "A generic object detection using a single query image without training". Tsinghua Science and Technology, vol.17, no.2, pp.194201, april, 2012, doi: 10.1109/TST.2012.6180045
Wan-Lei Zhao and Chong-Wah Ngo, "Flip-Invariant SIFT for Copy and Object Detection". Image Processing, IEEE Transactions on, vol.22, no.3, pp.980-991, march, 2013, doi: 10.1109/TIP.2012.2226043
Wen-Chung Chang and Kuo-Jung Hsu, "Vision-based side vehicle detection from a moving vehicle". System Science and Engineering (ICSSE), 2010 International Conference on, pp.553-558, july, 2010, doi: 10.1109/ICSSE.2010.5551779
Chen, Y., Zhang, R.-H., Shang and L., Hu, E. “Object detection and tracking with active camera on motion vectors of feature points and particle filter”. Review of Scientific Instruments, vol 84, no 6, 2013.
Jie Pan, Wenjie Chen andWenhui Peng, "A new moving objects detection method based on improved SURF algorithm". Control and Decision Conference (CCDC), 2013 25th Chinese, pp.901-906, may, 2013, doi: 10.1109/CCDC.2013.6561051
Bruhn, A., Weickert, J. and Schnörr, C, “Combining local and global optic flow methods”. International Journal of Computer Vision, pp. 211-231, 2205.
Daguang Jiang; Junkai Yi, "Comparison and Study of Classic Feature Point Detection Algorithm”. Computer Science & Service System (CSSS), 2012 International Conference on, pp.2307-2309, pp. 11-13, aug, 2012 doi: 10.1109/CSSS.2012.572
Vedaldi, A., “An open implementation of the SIFT detector and descriptor”. An open implementation of the SIFT detector and descriptor, 2007.