DOI:
https://doi.org/10.14483/22484728.11036Publicado:
2015-12-31Número:
Vol. 9 Núm. 2 (2015)Sección:
Visión ActualTomografía local con bases daubechies
Local tomography daubechies bases
Palabras clave:
Local Tomography, Daubechies bases, filtered back projection, vanishment moments, Hilbert transform, Calderón-Zygmund operator (en).Palabras clave:
tomografía local, bases Daubechies, retroproyección filtrada, momentos de desvanecimiento, transformada de Hilbert, Operador Calderón-Zygmund (es).Descargas
Resumen (es)
este artículo explica que las bases Daubechies puede ser usadas para diseñar algoritmos de reconstrucción localizada de imágenes tomográficas desde las proyecciones almacenadas en matrices de datos dispersos. Los desarrollos de tales algoritmos reducen significativamente la cantidad de exposición a los rayos X trasmitidos en la tomografía, evitando daños colaterales a largo plazo en pacientes, en órganos como pulmones, corazón, y también en lesiones de la médula
Resumen (en)
This article explains that Daubechies bases can be used to design algorithms that reconstruct localized tomographic images from sparse data matrix projections. The developments of such algorithms significantly reduce transmission tomography’s amount of X ray exposure, avoiding collateral damage in patients over the long-term, in organs such as the lungs, heart, and also spinal injuries.
Referencias
G.T. Herman, “Fundamentals of Computarized Tomography: Image Reconstruction from Projections (Advances in Pattern Recognition)”, 2nd Ed, Springer. (2009)
Ge. Wang, and M. W. Vannier, “Computarized Tomography”, Departament of Radiology, University of Iowa, Iowa 52242, Iowa City (USA). (1998)
M. Defrise, and G. T. Gullberg, “Image Reconstruction”, Phys. Med. Biol. 51. (2006)
K. Narayan, and M. Unser, “On the Hilbert Transform of Wavelets”, IEEE Transactions on signal processing, vol. 59. no. 4. (2010).
I. Daubechies, “Ten Lectures on Wavelets”, SIAM. (1992).
W. A. Kalender, “Computed Tomography: Fundamentals, System Technology, Image Quality, Apllications”, Wiley. (2006).
C. Kak, and M. Slaney, “Principles of Computarized Tomography”, New –york: IEEE press. (1988).
S. R. Deans, “The Radon Transform and some of its aplications”, Ed: John Wiley and Sons Inc., New York. (1983).
F. Natterer, “The Mathematics of Computarized Tomography”, John Wiley&Sons, New York, 1986.
F. Natterer, “Fourier reconstruction in tomography”, Numer. Math. pp. 343-353. (1985)
A. Markoe, “Fourier inversion of the attenuated Radon transform”, SIAM J. Math. Anal. To appear. (1986)
E. Bedrosian, “A product theorem for Hilbert transform” Proc. IEEE. vol. 51. no. 5. (1963)
M. Bottema, B. Moran, and S. Suvorova “An Apllication of Wavelets in Tomography”, Digital Signal Processing 8. SP980326. (1998)
G. B. Folland, “Fourier Analysis and Its Applications”, Wadsworth&Brooks/Cole, Pacific Grove, CA, 1992.
P.Kuchment, k. Lancaster, and L. Magilezskaya, “On the structure of local tomography. Inverse Problems To appear”.
P. Maass, “The interior Radon transform”, SIAM J. Appl. Math., 52(3): pp. 70-724, 1992.
K.T.Smith,“Inversion of the X-ray transform”,SIAM-AMS Proceedings,14, pp.41-52. (1984)
C. Berenstein and D. Walnut, “Local inversion of the Radon transform in even dimensions using wavelets”, In 75 Years of Radon Transform, S. Gindlikin and P. Michor, editors, 45-69. International Press, Cambridge, MA, 1994.
A. Faridani, D. Finch, E. Ritman, and K. Smith, “Local tomography II”, SIAM J. Appl. Math., submitted.
A. Faridani, F. Keinert, F. Natterrer, E. Ritman, and K. Smith, “Local and tomography. In Signal Processing”, IMA Vol. Math. Apll., Vol. 23, Springer-Verlag, New York, pp. 241-255. 1990.
M. Holschneider, “Inverse Radon transforms. Inverse problems”, pp. 853-861, 1999.
A. Faridani, E. Ritman, and K. T. Smith, “Local tomography”, SIAM J Appl. Math., vol. 52, no. 2, pp. 459-484, April 1992.
Louis, A. ,K., and A. Reider, “Incomplete data problems in X- Ray computerized tomography”, Numeriche Mathemetik, 56, pp. 371- 383.1989,
Chui, C., “An Introduction to Wavelets”, Volumes 1 and 2, Academic Press, San Diego, 1992.
Mallat, S., “A Wavelet Tour of Signal Processing”, Academic Press, San Diego, 1998.
Meyer, Y., “Wavelets & Applications, Society for Industrial and Applied Mathematics”, Philadelphia, PA, 1993.
R. S. Strichartz, “How To Make Wavelets,” Amer. Math. Monthly, 100 pp. 539-556. (1993).
Albert Boggess., and Francis J. Narcowitch, “A First Course in Wavelets with Fourier Analysis”. Prentice-Hall, Inc.(2001).
D. Walnut, “An Introduction to Wavelet Analysis”, Birkhauser. (2001)
I. Daubechies, “Orthonormal bases of compactly supported wavelets II: Variations on a theme”, SIAM J. Math. Anal 24. (1993)
C. Chaux, L. Duval, J.C. Pesquet, “Hilbert pairs of m-band orthonormal wavelet bases”, in Proc. Eur. Signal Image Process. Conf. (2004)
K. N. Chaudhury, and M. Unser “Construction of Hilbert transform pairs of wavelet bases and Gabor-like transforms,” IEEE Trans. Signal Process., vol 57. no. 9. (2009)
T. Olson, and J. DeStefano, “Wavelet localization of the Radon transform” IEEE Trans. Signal Process. vol 42. no. 8. (1994)
J. Villegas, A. Alfonso, R. De Armas, “El problema de la tomografía local. Enfoque wavelets”, Universidad Central. Bogotá. (2012)
F. R. Kschischang, “The Hilbert Transform”, The Edward S. Rogers Sr. Departament of Electrical and Computer Engineering University of Toronto. October 22.
S. L. Halnn, “Hilbert Transforms”, in The Transforms and Applications Handbook (A. Poularakis, Ed.) Boca Raton Fl: CRC Press, ch 7. (1996)
H. Vacca, W. Díaz. “Problema de tomografía local usando Wavelets B-Spline Cúbicos”. Revista Tecnura. Edición especial, 13-29. (2014)