DOI:
https://doi.org/10.14483/22484728.11054Publicado:
2015-12-11Número:
Vol. 9 Núm. 2 (2015)Sección:
Visión InvestigadoraAlgunas propiedades para matrices que conmutan con su traspuesta
Some properties for matrices that commute with their transpose
Palabras clave:
Matriz cuadrada, operador de transposición, conmutatividad, números complejos (es).Palabras clave:
squared Matrix, transposition operator, commutativity, complex numbers (en).Descargas
Resumen (es)
el propósito de este artículo es presentar algunas condiciones que caracterizan el conjunto de matrices n X n: Tn = {A ∈ Mn (C) | AAT = ATA }, donde M n (C) denota el conjunto de las matrices cuadradas de orden n, C el conjunto de los números complejos y T el operador de trasposición.
Resumen (en)
the purpose of this article is to present some conditions in the general n X n , and the particular 2×2 and 3×3 cases, that characterize the matrices set Tn = { A ∈ Mn (C) | AAT = AT A}, where Mn (C) denotes the squared matrices set of nth order, C the set of complex numbers and T the transposition operator.
Referencias
Elsner, L. and Ikramov, C. R., Normal matrices: An Update,LinearAlgebraanditsApplications,254(1997)7998.
Grone, R., Johnson, C. R., Sa, E. M. and Wolkovicz, H.,Normalmatrices,LinearAlgebraanditsApplications, 87 (1987) 213-225.
Goodson, G., Matrices That Commute with Their Conjugatevand Transpose , Advances in Linear Algebra & Matrix Theory, 3 (2013) 22-25.
Horn, R. and Johnson, C., Matrix Analysis, Cambridge U.P., 1985.
Horn, R. and Johnson, C., Topics in Matrix Analysis, Cambridge U.P., 1991.
Suprunenko, D. A. and Tyshkevich, R. I., Commutative matrices, Academic Press, 1968.
Taussky, O., A generalization of matrix commutativity, Linear Algebra and its Applications, 2 (1969) 349-353.
Golden, K., Grimmett, G., James, R., Milton, G., and Sen, P., Mathematics of Multiscale Materials, Springer, (1998) 18-19.
Horváth, Z. and Palla, L., Nonperturbative Quantumfield-theoreticMethodsandTheirApplications: proceedings of the 24th Johns Hopkins workshop, Bolyai College, Budapest, Hungary, World Scientific, (19-21 August 2000) 14-17.