DOI:
https://doi.org/10.14483/22484728.14069Publicado:
2018-11-08Número:
Vol. 12 Núm. 2 (2018)Sección:
Visión InvestigadoraInstrumentación para captura y transmisión de señales de vibración
Instrumentation for capture and transmission of vibration signals
Palabras clave:
wireless, maintenance, networks, sensors, signals, vibrations (en).Palabras clave:
inalámbricos, mantenimiento, redes, sensores, señales, vibraciones. (es).Descargas
Resumen (es)
Las señales de vibración son usadas generalmente para detectar fallos en máquinas rotativas. En la actualidad existen diferentes metodologías para realizar análisis basado en dichas señales. Una metodología usada extensamente es el Mantenimiento Basado en Condición (CBM). CBM es un mantenimiento programado que recomienda acciones basadas en información recolectada. Actualmente, para la adquisición de señales de vibración se usan comúnmente Redes de Sensores Inalámbricos (WSNs por sus siglas en ingles). Los WSNs son redes formadas por una cierta cantidad de nodos, cada nodo está equipado con un sensor para identificar un fenómeno físico como la luz, presión, temperatura, etc. En este artículo, se propone un robusto sistema basado en WSNs para la adquisición, almacenamiento y transmisión de señales de vibración, el cual combina un mecanismo de acondicionamiento, una tarjeta central y un dispositivo para la transmisión inalámbrica. El sistema propuesto cumple todas las funciones anteriores de manera automática y precisa para dos señales de vibración y una señal de velocidad.
Resumen (en)
Vibration signals are generally used to detect faults in rotary machines. There are several methods to perform analysis based on these signals. A widely used methodology is Condition Based Maintenance (CBM). CBM is a scheduled maintenance that recommends actions based on the information collected. Currently, for the acquisition of vibration signals are commonly used Wireless Sensor Networks (WSNs). WSNs are network formed by a large number of sensor nodes where each node is equipped with a sensor to detect physical phenomena such as light, heat, pressure, etc. In this paper, it is proposed a robust system based on WSNs for the acquisition, storage and transmission of vibrations signals, which combine a condition mechanism, a central card and a device for wireless transmition. The proposed system performs all the tasks mentioned above automatically and precisely for two vibration signals and one velocity signal
Referencias
L. Yang, X. Ma y Y. Zhao, “A condition-based maintenance model for a three- state system subject to degradation and environmental shocks,” Computers & In- dustrial Engineering, vol. 105, pp. 210–222, 2017, https://doi.org/10.1016/j.cie.2017.01.012
R. Ahmad y S. Kamaruddin, “An overview of time-based and condition- based maintenance in industrial application,” Computers & Industrial Engineering, vol. 63, n° 1, pp. 135–149, 2012, https://doi.org/10.1016/j.cie.2012.02.002
G. Plaza y N. L´opez, “Surface roughness monitoring by singular spectrum anal- ysis of vibration signals,” Mechanical Systems and Signal Processing, vol. 84, pp. 516–530, 2017, https://doi.org/10.1016/j.ymssp.2016.06.039
J. C. Chan y W. T. Peter, “A novel, fast, reliable data transmission algorithm for wireless machine health monitoring,” IEEE Transactions on Reliability, vol. 58, n° 2, pp. 295–304, 2009, https://doi.org/10.1109/TR.2009.2020479
R. Singh and A. Verma, “Energy efficient cross layer based adaptive threshold routing protocol for wsn,” AEU-International Journal of Electronics and Communications, vol. 72, pp. 166–173, 2017, https://doi.org/10.1016/j.aeue.2016.12.001
B. Bengherbia, M. Zmirli, A. Toubal y A. Guessoum, “Fpga-based wireless sensor nodes for vibration monitoring system and fault diagnosis,” Measurement, vol. 101, pp. 81–92, 2017, https://doi.org/10.1016/j.measurement.2017.01.022
S.-C. Bae, W.-S. Jang, S. Woo et al., “Prediction of wsn placement for bridge health monitoring based on material characteristics,” Automation in Construction, vol. 35, pp. 18–27, 2013, https://doi.org/10.1016/j.autcon.2013.02.002
B. Varghese, N. E. John, S. Sreelal y K. Gopal, “Design and development of an rf energy harvesting wireless sensor node (eh-wsn) for aerospace applications,” Procedia Computer Science, vol. 93, pp. 230–237, 2016, https://doi.org/10.1016/j.procs.2016.07.205
P. Junie, O. Dinu, C. Eremia, D. Stefanoiu, C. Petrescu y I. Savulescu, “A wsn based monitoring system for oil and gas transportation through pipelines,” IFAC Proceedings, vol. 45, n° 6, pp. 1796–1801, 2012, https://doi.org/10.3182/20120523-3-RO-2023.00150
T. Ezzedine y A. Zrelli, “Efficient measurement of temperature, humidity and strain variation by modeling reflection bragg grating spectrum in wsn,” Optik- International Journal for Light and Electron Optics, vol. 135, pp. 454–462, 2017. https://doi.org/10.1016/j.ijleo.2017.01.061
E. Sazonov, V. Krishnamurthy y R. Schilling, “Wireless intelligent sensor and actuator network-a scalable platform for time-synchronous applications of structural health monitoring,” Structural Health Monitoring, vol. 9, n° 5, pp. 465–476, 2010, https://doi.org/10.1177/1475921710370003
A. Araujo, J. García, J. Blesa, F. Tirado, E. Romero, A. Samartín, y O. Nieto, “Wireless measurement system for structural health monitoring with high time-synchronization accuracy,” IEEE Transactions on instrumentation and measurement, vol. 61, n° 3, pp. 801–810, 2012, https://doi.org/10.1109/TIM.2011.2170889
Q. Huang, B. Tang y L. Deng, “Development of high synchronous acquisition accuracy wireless sensor network for machine vibration monitoring,” Measurement, vol. 66, pp. 35–44, 2015, https://doi.org/10.1016/j.measurement.2015.01.021
Z. Wei, Y. Wang, S. He y J. Bao, “A novel intelligent method for bearing fault diagnosis based on affinity propagation clustering and adaptive feature selection,” Knowledge-Based Systems, vol. 116, pp. 1–12, 2017, https://doi.org/10.1016/j.knosys.2016.10.022
J. Elson, L. Girod y D. Estrin, “Fine-grained network time synchronization using reference broadcasts,” ACM SIGOPS Operating Systems Review, vol. 36, pp. 147–163, 2002, https://doi.org/10.1145/844128.844143
M. Khurana, R. Thalore, V. Raina y M. K. Jha, “Improved time synchronization in ml-mac for wsn using relay nodes,” AEU-International Journal of Electronics and Communications, vol. 69, n° 11, pp. 1622–1626, 2015, https://doi.org/10.1016/j.aeue.2015.07.011
X. Xiao, B. Tang, and L. Deng, “High accuracy synchronous acquisition algorithm of multi-hop sensor networks for machine vibration monitoring,” Measurement, vol. 102, pp. 10–19, 2017, https://doi.org/10.1016/j.measurement.2017.01.036
Q. Zhang, Y. Liu, H. Guo y Q. Zhang, “The design of hybrid mac protocol for industry monitoring system based on wsn,” Procedia Engineering, vol. 23, pp. 290–295, 2011, https://doi.org/10.1016/j.proeng.2011.11.2504
A. Abdaoui, T. M. El Fouly y M. H. Ahmed, “Impact of time synchronization error on the mode-shape identification and damage detection/localization in wsns for structural health monitoring,” Journal of Network and Computer Applications, vol. 83, pp. 181–189, 2017, https://doi.org/10.1016/j.jnca.2017.01.004
D. Torres, J. Hernández y A. Marino, “Estimación de la curva de presión en la cámara de combustión de mci monocilíndricos a partir del análisis de vibraciones,” in Congreso Iberoamericano de Motores Térmicos y Lubricación, Buenos Aires, Argentina, nov 2016. https://doi.orf/10.18502/keg.v3i1.1477