Frecuencia de resonancia en superficies selectivas en frecuencia tipo bucle cuadrado

Resonant frequency in square loop frequency selective surfaces

Palabras clave: square loop, resonant frequency, effective permittivity, frequency selective surfaces. (en_US)
Palabras clave: bucle cuadrado, frecuencia de resonancia, permitividad efectiva, superficies selectivas en frecuencia (es_ES)

Resumen (es_ES)

El análisis paramétrico usado en la determinación de los efectos de los parámetros geométricos y los asociados al dieléctrico en Superficies Selectivas en Frecuencia (SSF), es una herramienta de uso generalizado debido a la ausencia de formulaciones que permitan evaluar este tipo de efectos. El objetivo de esta clase de análisis es determinar la influencia en la frecuencia de resonancia de un parámetro en particular, bien sea asociado al soporte dieléctrico o a los parámetros geométricos de la superficie selectiva, con la finalidad de orientar el proceso de diseño de la superficie. En este artículo se presenta la aplicación del Modelo de Circuito Equivalente (MCE) actuando en conjunto con una novedosa formulación de la permitividad efectiva del dieléctrico en SSF tipo bucle cuadrado, el cual permite determinar los efectos de los parámetros geométricos y los asociados al dieléctrico en la frecuencia de resonancia de la superficie selectiva, haciendo innecesario el uso de análisis de tipo paramétrico. Los resultados obtenidos muestran una exactitud aceptable cuando se comparan con los arrojados por las simulaciones electromagnéticas realizadas en un software basado en el Método de los Elementos Finitos (MEF).

Resumen (en_US)

The parametric analysis used in the determination of effects of parameters, both geometrical and associated to dielectric in Frequency Selective Surfaces (FSS) constitutes a method of widespread use as a result of the scarcity of formulations for the assessment of this type of effects. The objective of this method of analysis is to determine the influence in resonant frequency of a particular parameter, either associated to the dielectric support or to the geometrical parameters of the selective surface, in order to guide the process of design of the surface. This article presents the application of the Equivalent Circuit Model (ECM) acting in conjunction with an innovative formulation of the effective permittivity of the dielectric in square loop FSS, that enables the determination of the geometrical parameters and those associated to the dielectric on resonant frequency of the selective surface. The proposed methodology makes unnecessary the use of analysis of parametric type. The results obtained show an acceptable accuracy in comparison with the electromagnetic simulations performed in software based on Finite Element Method (FEM).

Descargas

La descarga de datos todavía no está disponible.

Referencias

[1] C. A. Balanis, “Frequency Selective Screens” in Modern Antenna Handbook. 1st ed. New York, (USA), Wiley, 2008, pp.779-828, https://doi.org/10.1002/9780470294154

[2] H. H. Sung, “Frequency Selective wallpaper for mitigating indoor wireless interference. ” Ph. D. dissertation, Dept. Elect. Electron. Eng., Univ. Auckland, Auckland, New Zealand. 2006.

[3] S. Celozzi, G. Lovat, and R. Araneo, “Frequency Selective Surfaces” in Electromagnetic Shielding 1st ed. New York, (USA), Wiley, 2008, pp. 219-240, https://doi.org/10.1002/9780470268483.ch10

[4] F. Costa, A. Monorchio, and G. Manara. “Efficient analysis of frequency-selective surfaces by a simple equivalent-circuit model.” IEEE Antennas and Propagation Magazine, vol.54 no.4, pp. 35-48. Aug. 2012, https://doi.org/10.1109/MAP.2012.6309153

[5] A. Mackay, B. Sanz-Izquierdo, and E. A. Parker. “Evolution of frequency selective surfaces. ” Forum of Electromagnetic Research Methods and Applications Technologies, vol. 2 no.8, pp. 1-7, May-April. 2014

[6] A. L. P. S. Campos, R. C. O. Moreira, and J. I. Trindade. “A comparison between the equivalent circuit model and moment method to analyze FSS” Proceedings of IEEE International Conference Microwave and Optoelectronics (IMOC), Belem, Brazil, 2009. pp 760-765, https://doi.org/10.1109/IMOC.2009.5427477

[7] Z. L.Wang, K. Hashimoto, N. Shinohara and H. Matsumoto. “Frequency-selective surface for microwave power transmission. ” IEEE Transactions on Microwave Theory and Techniques, vol.4 no.10, pp. 2039-42. Oct.1999, https://doi.org/10.1109/22.795083

[8] T. K. Wu, “Fundamentals of Periodic Structures” in Frequency selective surface and grid array. 1st ed. New York, (USA): Wiley. 1995, pp. 1-25.

[9] P. Callaghan, E. A. Parker and R. J. Langley. “Influence of supporting dielectric layers on the transmission properties of frequency selective surfaces. ” IEE Proceedings H Microwaves, Antennas and Propagation IET, vol. 138 no.5, pp. 448-54. Oct.1991, https://doi.org/10.1049/ip-h-2.1991.0075

[10] M. A. Rodriguez and W. P. Carpes Jr. “Numerical model of the effective permittivity for square-loop frequency selective surfaces. ” IEEE Transactions on Magnetics, vol.51 no. 3, pp. 1-4. March 2015, https://doi.org/10.1109/TMAG.2014.2368782

[11] D. Ferreira, R. Calderinha, I. Cuinas and T. Fernandes. “Square loop and slot frequency selective surfaces study for equivalent circuit model optimization. ” IEEE Transactions on Antennas and Propagation, vol.63 no.9, pp. 3947-55. June 2015, https://doi.org/10.1109/TAP.2015.2444420

[12] M. A. Rodriguez and W. P. Carpes Jr. “Bandwidth for the equivalent Circuit Model in Square-loop frequency selective surfaces. ” IEEE Transactions on Antennas and Propagation, vol. 65 no.11, pp. 5932-39. Nov 2017, https://doi.org/10.1109/TAP.2017.2754418

[13] K. S. Jha, G. Singh, R. Jyoti, R. “A simple synthesis technique of single square loop frequency selective surface. ” Progress in Electromagnetic Research B, vol. 45, pp. 165-185. Oct. 2012, https://doi.org/10.2528/PIERB12090104

[14] S. Can, A. E. Yilmaz, “Parametric performance analysis of the square loop frequency selective surface. ” Elektrotehniški Vestnik, vol.80 no.3, pp. 110-115. Jan. 2013.

[15] Can, S., Yilmaz, A.E. Bandwidth enhancement of a triangle with gridded square loop loaded FSS for X and Ku bands. EuCAP. The 8th European conference on Antennas and Propagation, The Hague, Netherlands. 2014, pp. 2150-2153.

[16] A. Singh, R. Panwar, S. Putucheri, D. Singh V. Agarwala. Parametric analysis of FSS over radar absorbing nanocrystaline structures. RAECE. National Conference on Recent Advances in Electronics and Computer Engineering. Roorkee, India. 2015, pp. 75-79.

[17] S. Keyrous, G. Perotto, and H. J. Viser, . “Frequency selective surface for radio frequency energy harvesting applications. ” IET Microw. Antennas Propag., vol. 8 no. 7, pp. 523-531, May. 2014.

[18] P. Callaghan, E. A. Parker. “Element dependency in dielectric tuning of Frequency Selective Surfaces. ” Electronics Letters, vol. 28 no.1, pp. 42-44, Jan. 1992, https://doi.org/10.1049/el:19920026
Cómo citar
Rodríguez Barrera, M. A., & Pereira Carpes Jr, W. (2018). Frecuencia de resonancia en superficies selectivas en frecuencia tipo bucle cuadrado. Visión electrónica, 12(2), 226-233. https://doi.org/10.14483/22484728.14461
Publicado: 2018-10-27
Sección
Visión Investigadora

Artículos más leídos del mismo autor/a