DOI:
https://doi.org/10.14483/22484728.14627Publicado:
2017-12-27Número:
Vol. 11 Núm. 2 (2017)Sección:
Visión de CasoRadar and UAV: georeferencing and airspace surveillance system
Radar y UAV: sistema de georeferencia y vigilancia del espacio aereo
Palabras clave:
Drone, detection, radar, SAR, UAV, UAVSAR (en).Palabras clave:
Drone, detección, radar, SAR, UAV, UAVVSAR (es).Descargas
Resumen (en)
A ¨RADAR¨ system, from the English Acronym ¨Radio Detention and Ranging¨. Better known as ¨Radio Detection and Location¨ RDL. It is a system for detecting and positioning objects through shipping and reflection of electromagnetic waves in terms of the time of issue and the return of the waves and their speed (calculated by the Doppler effect of the electromagnetic signal received). Meanwhile, an autonomous unmanned vehicle, also known as Unmanned Aerial Vehicle, UAV, which is defined as an aircraft which does not carry a human operator, and uses aerodynamic forces to provide airlift by itself. Therefore, it can fly autonomously or it can be operated by remote control. This article focuses on the review of experiences where these two technologies are integrated, particularly UAVSAR (Uninhabited Aerial Vehicle Synthetic Aperture Radar). This is done in order to support research concerning the combination thereof to be applied in georeferencing humanitarian missions or military missions that require monitoring of airspace.
Resumen (es)
Un sistema RADAR -del acrónimo en inglés ¨Radio Detention and Ranging¨, es decir, ¨Detección y Localización por Radio¨, es un sistema de detección y posicionamiento de objetos a través de envío y reflexión de ondas electromagnéticas en términos del tiempo de emisión y regreso de las ondas así como de su velocidad calculada mediante el efecto Doppler de la señal electromagnética recibida. En tanto, un vehículo autónomo no tripulado -cuyo nombre oficial es Unmanned Aerial Vehicle (UAV), se define como un vehículo motorizado aéreo que no lleva un operador humano, y utiliza las fuerzas aerodinámicas para proporcionar la elevación del mismo: es decir, puede volar de forma autónoma o ser dirigido por control remoto. El presente artículo se centra en la revisión de experiencias donde se integran estas dos tecnologías -particularmente la UAVSAR (Vehículos aéreos no tripulados con sistema RADAR de apertura sintética)-, con el fin de soportar investigaciones referentes a la combinación de las mismas para ser aplicadas como herramienta de georreferenciación para misiones humanitarias y misiones militares que busquen vigilar el espacio aéreo.
Referencias
[2] I. A. Fernández. "El radar durante la II Guerra Mundial", july 11th 2016. [Online]. Available: http://histinf.blogs.upv.es/files/2011/12/radar.pdf
[3] C. M. Richard. “Uninhabited Combat Aerial Vehicles: Airpower by the People, for the People, But Not with the People”, july 11th 2016. [Online]. Available: http://www.jhuapl.edu/techdigest/TD/td3203/32_03-Keane.pdf
[4] N. C. Bernard. “Winged Shield, Winged Sword: A History of the USAF, Air Force History and Museums Program”, july 11th 2016 [Online]. Available: http://www.afhso.af.mil/shared/media/document/AFD-101006-029.pdf
[5] O. R. Thomas. “Uninhabited Air Vehicle Critical Leverage System for Our Nation’s Defense in 2025”, july 11th 2016 [Online]. Available: http://www.jhuapl.edu/techdigest/TD/td3203/32_03-issue.pdf
[6] S. N. Lloyd. “Naval Consulting Board of the United States, Govern¬ment Printing Office, Washington, DC, 1920”, july 12th 2016 [Online]. Available: http://edison.rutgers.edu/Scott.pdf
[7] C. J. Robert. “The Official Chronology of the U.S. Navy in World War II, U.S. Naval Institute, Annapolis”, july 11th 2011 [Online]. Available: https://books.google.com.co/books?id=NkGNAgAAQBAJ&pg
[8] N. B. Geddes. “Magic Motorways. Random House Book, New York, NY, USA. 1940”, july 11th 2016 [Online], Available: https://archive.org/details/magicmotorways00geddrich
[9] B. R. Dickmanns. “the seeing passenger car 'VaMoRs-P', Proceedings of the Intelligent Vehicles '94 Symposium, 1994”, july 11th 2016 [Online], Available: https://books.google.com.co/books?id=9jp_pjLQDMkC&pg
[10] W. Douglas. “A Question of Loyalty: Gen. Billy Mitchell and the Court-Martial That Gripped a Nation”, july 11th 2016 [Online], Available: http://www.au.af.mil/au/afri/aspj/airchronicles/bookrev/waller.html
[11] D. Martínez. “Cooperation between UAS and Wireless Sensor networks for efficient data collection in large environments’’. J. Intell Robot Syst, vol. 70, 2013, pp. 491-508.
[12] M. S. ‘’Validation of measurements of land plot area using UAV imagery’’. International Journal of Applied Earth Observation and Geoinformation, vol. 33, 2014, pp. 270-279. https://doi.org/10.1016/j.jag.2014.06.009
[13] W. Zang. ‘’Investigating small-scale water pollutionwith UAV remote Sensing technology’’. july 11th 2016 [Online] Available: http://ieeexplore.ieee.org/abstract/document/6321515/
[14] R. Tapia, P.Rosa, B. F. Sánchez, "Drones: general aspects and social applications". Revista Vision Electronica, vol 10, no 2, july-december 2016.
[15] IEEE Std 521-2002, “Std 521 – 2002”, july 11th 2016 [Online], Available: http://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=1160089
[16] G. P. Kulemin “Millimeter-wave radar targets and clutter”. USA: Artech House, MA, 2003.
[17] J. I. Scheer, “Coherent Radar Performance Estimation” Norwood: Artech House, 1993.
[18] A. W. Schafer. “Discrete-Time Signal Processing”, New Jersey: Prentice Hall, Engewood Cliffs, 1989.
[19] R. M. Majewski. “Spotlight Synthetic Aperture Radar: Signal Processing Algorithms”. London: Artech House, 1995.
[20] L. N. Mozeson. “Radar Signals”, New Jersey: Wiley-Interscience, 2004.
[21] S. A. Cambone, K. J. Krieg, P. Pace, L. Wells, “Unmanned Aircraft Systems (UAS) Roadmap, 2005-2030”. Department of Defense, United States of America, july 14th 2016 2005. [Online], Available: http://fas.org/irp/program/collect/uav_roadmap2005.pdf
[22] M. Soumekh. “Synthetic Aperture Radar Signal Processing with MATLAB Algorithms”. USA: John Wiley & Sons, Inc, 1999.
[23] W. L. Post. "Line of Sight Considerations in the Fulda Gap Area of the Federal Republic of Germany." Technical Report DELCS-TR-82-2. U.S. Army ERADCOM Combat Surveillance & Target Acquisition Laboratory. Fort Monmouth, july 11th 2016 [Online], Available: https://www.ll.mit.edu/publications/journal/pdf/vol03_no1/3.1.6.radaraUAV.pdf
[24] R. S. Goodman “Radar: Signal Processing Algorithms”. London: Artech House, 1995.
[25] J. T. Castillo. “Modelado de Blancos Extensos para la Simulación de Escenarios en Radares de Apertura Sintética”. XX Simposium Nacional de la Unión Científica de Radio (URSI 2005), Valencia, Spain, September 2005.
[26] E. C. Zaugg. “Full motion compensation for LFM-CW Synthetic Aperture Radar”. International Geoscience and Remote Sensing Symposium, IGARSS 2007, pp. 5198 - 5201, 23-28 July 2007. https://doi.org/10.1109/IGARSS.2007.4424033
[27] L. G. David. “Theory and application of motion compensation LFM-CW SAR”. Trans. Geoscience and Remote Sensing, vol. 46, no. 10, october 2008, pp. 2990 – 2998. https://doi.org/10.1109/TGRS.2008.921958
[28] T. A. Kennedy. “Strapdown Inertial Measurements Units for Motion Compensation for SAR”. Aerospace and Electronics Systems Magazine, vol. 3, no.10, october 1988.
[29] J. C. Kirk. “Motion Compensation for synthetic aperture radar”, Trans. Aerospace and Electronic Systems, vol. AES-11, no. 3, may 1975, pp. 338-348. https://doi.org/10.1109/TAES.1975.308083
[30] J. Ontiveros. “Controlador aéreo. Aeronaves no tripuladas y control del tráfico aéreo’’. july 15th 2016 [Online]. Available: http://www.hispaviacion.es/author/jorgeontiveros/
[31] OACI. ‘’Sistemas de aeronaves no tripuladas (UAS), 2011’’. july 15th 2016 [Online]. Available: http://www.icao.int/Meetings/UAS/Documents/Circular%20328_es.pdf
[32] UAS. ‘’Sistemas de aeronaves no tripuladas’’, july 16th 2016 [Online]. Available: http://www.icao.int/Meetings/UAS/Documents/Circular%20328_es.pdf
[33] Á. M. Pardo “Aeronaves de Combate No Tripuladas (UCAV) Unmanned Combat Air Vehicle, Velocirraptor’’, july 11th 2016 [Online]. Available: http://www.militar.org.ua/militar/aviacion/avion-Unmanned-Combat-Air-Vehicle.html
[34] UAV task-force, “final report, and a concept for European regulations for civil unmanned aerial vehicles (UAVs)”, july 11th 2016 [Online]. Available: http://www.eurousc.com/media/1054/npa_16_2005_appendix.pdf
[35] Recomendación ITU-R M.1452-1 (10/2009). july 11th 2016 [Online]. Available: https://www.google.com.co/webhp?sourceid=chrome-instant&ion=1&espv=2&ie=UTF-8#q=Recomendaci%C3%B3n+ITU-R+M.1452-1+(10%2F2009)
[36] Ministerio de Defensa. “UAS (Unmanned Aircraft System. Sobre su integración en el espacio aéreo no segregado”. Monografías del SOPT, july 11th 2016 [Online]. Available: http://www.tecnologiaeinnovacion.defensa.gob.es/Lists/Publicaciones/Attachments/18/monografia_sopt_1.pdf
[37] “Cronología de los UAV”. july 11th 2016 [Online]. Available: http://actualidad.rt.com/actualidad/view/80396-vehiculos-aereos-tripulados-hitos-historicos
[38] C. Kopp. “Active Electronically Steered Arrays,” Air Power Australia website, 2007. Retrieved May 30, august 18th 2016 [Online]. Available: http://www.ausairpower.net/aesa-intro.html
[39] R. Austin. “Unmanned Aircraft Systems: UAVS Design, Development and Deplyment”, 2010. WILEY. july 11th 2016 [Online] Available: http://airspot.ru/book/file/1152/Reg_Austin_-_Unmanned_Air_Systems_UAV_Design__Development_and_Deployment_-_2010.pdf
[40] V. Raska. “See and Avoid (SAA) Passive Ranging Concepts,” Proceedings of TAAC Conference, Santa Ana Pueblo, New México, august 20th 2016 [Online]. Available: https://repositorio.unican.es/xmlui/bitstream/handle/10902/3838/359538.pdf?sequence=1
[41] D. E. Grilley. “Resolution Requirements for Passive Sense & Avoid,” Alion Science & Technology, 3592 Collins Ferry Rd., Ste. 180, West Virginia: Morgantown, 2005.
[42] D. J. Kim. “Hierarchical Longitudinal Controller for Rear-End Collision Avoidance”. Transactions on Industrial Electronics, vol. 54, no. 2. 2007.
[43] Igac, “Drones y Radares: Tecnologías del IGAC para apoyar el proceso de restitución de tierras”, august 20th 2016 [Online]. Available: http://www.igac.gov.co/wps/wcm/connect/e313c30042359f45b9c9fda2b03bb2df/Drones+y+radares.pdf?MOD=AJPERES
[44] “Competitive speciation and costs of choosiness”, august 20th 2016 [Online]. Available: http://onlinelibrary.wiley.com/doi/10.1111/j.1420-9101.2008.01547.x/full
[45] P. Pace. “Unmanned Aircraft Systems (UAS) Roadmap, 2005-2030”. Department of Defense, United States of America, august 20th 2016 [Online]. Available: http://www.tc.faa.gov/its/worldpac/techrpt/ar0841.pdf
[46] S. Zhishun. “Detecting the strong scatterers of target with ISAR”. Proceedings of the Aerospace and Electronics Conference, NAECON, vol. 2, May 1995, pp. 992 – 995, 22-26. https://doi.org/10.1109/NAECON.1995.522059
[47] W. L. Post. "Line of Sight Considerations in the Fulda Gap Area of the Federal Republic of Germany." Technical Report DELCS-TR-82-2. U.S. Army ERADCOM Combat Surveillance & Target Acquisition Laboratory. Fort Monmouth, august 20th 2016. [Online]. Available: https://digital.lib.washington.edu/researchworks/bitstream/handle/1773/26779/Oglesby_washington_0250O_13224.pdf?sequence=1
[48] M. Weisgerber, “USAF Seeks Endurance-Payload Sweet Spot,” august 20th 2016 [Online]. Available: http://www.dis.xlibx.info/dd-other/418924-11-congressional-research-service-7-5700-wwwcrsgov-r42136-crs-report.php
[49] A. Gonzalez. “Radar Sensor in Millimeter-Wave Band”. International Conference on Sensor Technologies and Applications, Sensor Comm 2007, pp. 5 – 9, 14-20, Oct. 2007.
[50] H. Chao. “Remote Sensing and Actuation Using Unmanned Vehicles”. august 20th 2016 [Online]. Available: http://onlinelibrary.wiley.com/doi/10.1002/9781118377178.fmatter/pdf
[51] M. Datcu. “Corregistro de Imágenes SAR basado en diferentes Estimadores de Coherencia”. XXIII Simposium Nacional de la Unión Científica de Radio (URSI 2008), Madrid, Spain, pp. 22-24, September 2008.