Design of a magnetic encoder using Hall effect

Diseño de un encoder magnético usando efecto Hall

  • William Alejandro López-Contreras
  • José Danilo Rairán-Antolines
Palabras clave: Hall effect, Magnetic encoder, Position control, Position sensor (en_US)
Palabras clave: Efecto Hall, Encoder magnético, Control de posición, Sensor de posición (es_ES)

Resumen (en_US)

We present the design of a magnetic encoder to measure angular position. The proposed encoder includes two Hall sensors in quadrature in a fixed platform. In addition, and over the sensors, there are two permanent magnets in a shaft. The relative motion between the fixed and the movable components generate a voltage variation in the sensors, which serve to generate the approximation of the angular position. We detail the acquisition process and the linearization method, because we consider that these are the most important contributions of this work. Lastly, we show the application of the encoder in the position control of a direct current motor to show the performance of the encoder estimating fast and slow angular position changes.

Resumen (es_ES)

En este artículo se presenta el diseño de un encoder magnético para la medición de la posición angular. El encoder está compuesto por dos sensores de efecto Hall en cuadratura en una plataforma fija. Además, sobre los sensores, y en el eje a medir se ubican dos imanes permanentes con magnetización axial. El movimiento relativo entre el componente fijo y el móvil del encoder genera una variación de voltaje en los sensores. Esta variación da lugar a la aproximación de la posición angular. Se detallan los procesos de adquisición y linealización de los datos, dado que son los aportes más importantes de esta propuesta. Para finalizar se muestra la aplicación del encoder en el control de posición angular del eje de un motor de corriente directa, con lo que se muestra el trabajo del encoder ante cambios lentos y rápidos de posición.


La descarga de datos todavía no está disponible.


[1] R. Weiss, R. Makuch, S. Member, A. Itzke and R. Weigel, “Crosstalk in Circular Arrays of Magnetic Sensors for Current Measurement”, IEEE Trans. Ind. Electron., vol. 64, no. 6, 2017, pp. 4903–4909.

[2] V. Luong, J. Jeng, B. Lai and C. Lu, “BT-01 Development of low-noise three-axis magnetometer with tunneling-magnetoresistance sensors”, IEEE International Magnetics Conference (INTERMAG), Beijing, China, 2015.

[3] C. S. Anoop and B. George, “A new variable Reluctance-Hall Effect based angle sensor”, Sixth International Conference on Sensing Technology (ICST), 2012.

[4] C. S. Anoop and B. George, “New signal conditioning circuit for MR angle transducers with full-circle range”, IEEE Trans. Instrum. Meas., vol. 62, no. 5, 2013, pp. 1308–1317.

[5] S. Hao, Y. Liu and M. Hao, “Study on a Novel Absolute Magnetic Encoder”, IEEE International Conference on Robotics and Biomimetics, Bangkok, Thailand, 2009, pp. 1773–1776.

[6] J. Liu, Z. Liu, Z. Wang and J. Cao, “AS5048 Magnetic Encoder for the Application in DC Motor Position Control of Portable Spectrometer”, IEEE Advanced Information Management, Communicates, Electronic and Automation Control Conference, Xian, China, 2016, pp. 345–348.

[7] C. S. Anoop and B. George, “Study of a Hall Effect Brake Wear Sensor using Finite Element Modelling and Analysis”, 19th Symposium IMEKO TC 4 Symposium and 17th IWADC Workshop Advances in Instrumentation and Sensors Interoperability, Barcelona, Spain, 2013, pp. 480–484.

[8] B. George, V. J. Kumar and A. Chandrika Sreekantan, “Analysis of a tunneling magneto-resistance-based angle transducer”, IET Circuits, Devices Syst., vol. 8, no. 4, 2014, pp. 301–310.

[9] J. Kim and H. Son, “Two-DOF Orientation Measurement System for a Magnet with Single Magnetic Sensor and Neural Network”, 14th International Conference on Ubiquitous Robots and Ambient Intelligence (URAI), 2017, pp. 448–453.

[10] Y. Liu, H. Hsiao and J. J. Chang, “Design and Validation of Polarity-Changeable Magnetizer for Encoding Patterns on Ring-Like Rotary Encoders”, IEEE Trans. Magn., vol. 53, no. 3, 2017, pp. 3–7.

[11] S. Gauthier and D. M. Technologies, “The Development of a High Accuracy Multipole Strip Magnet for Non-Contact Linear and Rotary Position Measurement”, Dexter Magnetic Technologies Magazine, 2012, pp. 1–9.

[12] S. Wu and Z. Wang, “Equilateral Measurement of Rotational Positions with Magnetic Encoders”, IEEE Trans. Instrum. Meas., vol. 65, no. 10, 2016, pp. 2360–2368.

[13] N. J. Medrano-Marques, B. Martin-del-Brio, A. Bono and C. Bernal-Ruiz, “Implementing Neural Networks onto Standard Low-Cost Microcontrollers for Sensor Signal Processing”, IEEE Conference on Emerging Technologies and Factory Automation, vol. 2, 2005, pp. 967– 972.

[14] J. Lara, S. Member, J. Xu and A. Chandra, “A Novel Algorithm Based on Polynomial Approximations for an Efficient Error Compensation of Magnetic Analog Encoders in PMSMs for EVs”, IEEE Trans. Ind. Electron., vol. 63, no. 6, 2016, pp. 3377–3388.

[15] M. Benammar, S. Member, A. Khattab and S. Member, “A Sinusoidal Encoder-to-Digital Converter Based on an Improved Tangent Method”, IEEE Sens. J., vol. 17, no. 16, 2017, pp. 5169–5179.

[16] D. Rapos and C. Mechefske, “Dynamic Sensor Calibration: A Comparative Study of a Hall Effect Sensor and an Incremental Encoder for Measuring Shaft Rotational Position”, IEEE International Conference on Prognostics and Health Management (ICPHM), 2016, pp. 1–5.

[17] J. D. Rairán-Antolines, C. E. Guerrero-Cifuentes and J. A. Mateus-Pineda, “PID and Fuzzy Controller Design for DC Motor Positioning”, Ingeniería y Universidad, vol. 14, no. 1, 2010, pp. 137–160.

[18] X. Wang, H. Wang, H. Xie, D. Lou and K. Yang, “Design of Magnetic Encoder Based on Reconstructing and Mapping Looking-up Table”, 19th International Conference on Electrical Machines and Systems (ICEMS), 2016, pp. 2–5.
Cómo citar
López-Contreras , W. A., & Rairán-Antolines , J. D. (2019). Diseño de un encoder magnético usando efecto Hall. Visión electrónica, 13(2), 254-261.
Publicado: 2019-07-30
Visión Investigadora