Duty cycle and radiation estimates using maximum load transfer point for optimization of a 100KVA photovoltaic system

Estimaciones de ciclo de trabajo y radiación utilizando máximo punto de transferencia de carga para la optimización de un sistema fotovoltaico de 100KVA

  • Sergio Alejandro Terán Rodríguez Universidad Politécnica Salesiana
  • Franklin Jonathan Rojas Caicedo Universidad Politécnica Salesiana
  • Esteban Mauricio Inga Ortega Universidad Politécnica Salesiana
Palabras clave: Duty cycle, MPPT, Photovoltaic, Power, Radiation, Temperature (en_US)
Palabras clave: Duty cycle, MPPT, Fotovoltaico, Potencia, Radiación, Temperatura (es_ES)

Resumen (en_US)

In this document, the variation of temperature and radiation in a 100 kW photovoltaic assembly is connected to a 25 kV network through a DC-DC booster converter and a three-phase three-phase voltage source converter (VSC). Maximum power point tracking (MPPT) is implemented in the elevator converter using a Simulink® model that uses the technique of 'Incremental Conductance + Integral Regulator'.

The switching duty cycle is optimized by an MPPT controller that uses the technique of 'Incremental Conductance + Integral Regulator'. This MPPT system automatically modifies the duty cycle to generate the voltage required to extract the maximum power.

Resumen (es_ES)

En este documento, se describen la variación de la temperatura y radiación en un conjunto fotovoltaico de 100 kW está conectado a una red de 25 kV a través de un convertidor de refuerzo CC-CC y un convertidor de fuente de voltaje trifásico de tres niveles (VSC). El seguimiento del punto de máxima potencia (MPPT) se implementa en el convertidor elevador mediante un modelo Simulink® que utiliza la técnica de 'Conductancia incremental + Regulador integral'.

El ciclo de trabajo de conmutación está optimizado por un controlador MPPT que utiliza la técnica de 'Conductancia incremental + Regulador integral'. Este sistema MPPT varía automáticamente el ciclo de trabajo para generar el voltaje requerido para extraer la potencia máxima.

Descargas

La descarga de datos todavía no está disponible.

Referencias

G. R. Zhang and R. X. Xiang, "Research on the MPPT of photovoltaic cells", Energy Engineering, no. 1, pp.13-16, January 2009.

C. Thueanpangthaim, P. Wongyai, K. Areerak, and K. Areerak, “The maximum power point tracking for stand-alone photovoltaic system using current based approach”, International Electrical Engineering Congress (iEECON), pp. 1-4, 2017. https://doi.org/10.1109/IEECON.2017.8075745

N. A. Ahmed and M. Miyatake, "A stand-alone hybrid generation system combining solar photovoltaic and wind turbine with simple maximum power point tracking control", CES/IEEE 5th International Power Electronics and Motion Control Conference, pp. 13-16, 2006. https://doi.org/10.1109/IPEMC.2006.4777984

J. Khanam and S. Y. Foo, “Neural Networks Technique for Maximum Power Point Tracking of Photovoltaic Array”, Conference Proceedings - IEEE SoutheastCon, pp. 1-4, 2018. https://doi.org/10.1109/SECON.2018.8479054

M. J. Khan and L. Mathew, “Artificial intelligence based maximum power point tracking algorithm for photo-voltaic system under variable environmental conditions”, Recent Developments in Control, Automation and Power Engineering, RDCAPE, pp. 114-119, 2017. https://doi.org/10.1109/RDCAPE.2017.8358251

S. Shi, Y. Wang and P. Jin, “Study of maximum power point tracking methods for photovoltaic power generation system”, Proceedings - Chinese Automation Congress, pp. 835-840, 2013. https://doi.org/10.1109/CAC.2013.6775849

H. Boumaaraf, A. Talha and O. Bouhali, “Maximum power point tracking using neural networks control for grid-connected photovoltaic system”, International Conference on Power Engineering, Energy and Electrical Drives, pp. 593-597, 2013. https://doi.org/10.1109/PowerEng.2013.6635675

C. Huang, L. Wang, H. Long, X. Luo and J. H. Wang, “A hybrid global maximum power point tracking method for photovoltaic arrays under partial shading conditions”, Optik, vol. 180, pp. 665-674, 2019. https://doi.org/10.1016/j.ijleo.2018.11.158

S. K. Sahoo, M. Balamurugan, S. Anurag, R. Kumar and V. Priya, “Maximum power point tracking for PV panels using ant colony optimization”, Innovations in Power and Advanced Computing Technologies, i-PACT, pp. 1-4, 2017. https://doi.org/10.1109/IPACT.2017.8245004

S. S. Mohammed, D. Devaraj and T. P. Ahamed, “Maximum power point tracking system for stand alone solar PV power system using Adaptive Neuro-Fuzzy Inference System”, Biennial International Conference on Power and Energy Systems: Towards Sustainable Energy, PESTSE, pp. 1-4, 2016. https://doi.org/10.1109/PESTSE.2016.7516536

T. Esram and P. L. Chapman, “Comparison of photovoltaic array maximum power point tracking techniques”, IEEE Trans. Energy Convers., vol. 22, no. 2, pp. 439-449, 2007. https://doi.org/10.1109/TEC.2006.874230

K. Ishaque and Z. Salam, "A review of maximum power point tracking techniques of PV system for uniform insolation and partial shading condition", Renewable and Sustainable Energy Reviews, vol. 19, pp. 475-488, 2013. https://doi.org/10.1016/j.rser.2012.11.032

L. Liu, X. Meng, and C. Liu. "A review of maximum power point tracking methods of PV power system at uniform and partial shading", Renewable and Sustainable Energy Reviews, vol. 53, pp. 1500-1507, 2016. https://doi.org/10.1016/j.rser.2015.09.065

A. Kouchaki, H. Iman-Eini, and B. Asaei, "A new maximum power point tracking strategy for PV arrays under uniform and non-uniform insolation conditions", Solar Energy, vol. 91, pp.221-232, 2013. https://doi.org/10.1016/j.solener.2013.01.009

R. C. Pilawa-Podgurski and D. J. Perreault, "Submodule integrated distributed maximum power point tracking for solar photovoltaic applications”, IEEE Transactions on Power Electronics, vol. 28, no. 6, pp. 2957-2967, 2013. https://doi.org/10.1109/TPEL.2012.2220861

C. Woei-Luen, and C. Tsai. "Optimal balancing control for tracking theoretical global MPP of series PV modules subject to partial shading", IEEE Transactions on Industrial Electronics, vol. 62, no. 8, pp. 4837-4848, 2015. https://doi.org/10.1109/TIE.2015.2400414

K. Ishaque, Z. Salam, M. Amjad and S. Mekhilef, "An improved Particle Swarm Optimization (PSO)-based MPPT for PV with reduced steady-state oscillation”, IEEE Transactions on Power Electronics, vol. 27, no. 8, pp. 3627-3638, 2012. https://doi.org/10.1109/TPEL.2012.2185713

E. Karatepe and T. Hiyama, "Performance enhancement of photovoltaic array through string and central based MPPT system under non-uniform irradiance conditions", Energy Conversion and Management, vol. 62, pp. 131-140, 2012. https://doi.org/10.1016/j.enconman.2012.03.028

S. Daraban, D. Petreus and C. Morel, "A novel global MPPT based on genetic algorithms for photovoltaic systems under the influence of partial shading", IECON- 39th Annual Conference of the IEEE Industrial Electronics Society, pp. 1490-1495, 2013. https://doi.org/10.1109/IECON.2013.6699353

K. Sundareswaran, S. Peddapati and S. Palani, "MPPT of PV systems under partial shaded conditions through a colony of flashing fireflies", IEEE Transactions on Energy Conversion, vol. 29, no. 2, pp. 463-472, 2014. https://doi.org/10.1109/TEC.2014.2298237

K. Sundareswarm, P. Sankar, P. S. Nayak, S. P. Simon, and S. Palani, "Enhanced energy output from a PV system under partial shaded conditions through artificial bee colony", IEEE Transactions on Sustainable Energy, vol. 6, no. 1, pp. 198−209, 2015. https://doi.org/10.1109/TSTE.2014.2363521

S. Lyden, and M. E. Haque, "A simulated annealing global maximum power point tracking approach for PV modules under partial shading conditions", IEEE Transactions on Power Electronics, vol. 31, no. 6, pp. 4171-4181, 2016. https://doi.org/10.1109/TPEL.2015.2468592

H. Patel and V. Agarwal, "Maximum power point tracking scheme for PV systems operating under partially shaded conditions", IEEE Transactions on Industrial Electronics, vol. 55, no. 4, pp. 1689-1698, 2008. https://doi.org/10.1109/TIE.2008.917118

J. Qi, Y. Zhang, and Y. Chen, "Modeling and maximum power point tracking (MPPT) method for PV array under partial shade conditions", Renewable Energy, vol. 66, pp. 337-345, 2014. https://doi.org/10.1016/j.renene.2013.12.018

E. Koutroulis and F. Blaabjerg, "A new technique for tracking the global maximum power point of PV arrays operating under partial-shading conditions", IEEE Journal of Photovoltaics, vol. 2, no. 2, pp. 184-190, 2012. https://doi.org/10.1109/JPHOTOV.2012.2183578

K. S. Tey and S. Mekhilef, "Modified incremental conductance algorithm for photovoltaic system under partial shading conditions and load variation", IEEE Transactions on Industrial Electronics, vol. 61, no. 10, pp. 5384-5392, 2014. https://doi.org/10.1109/TIE.2014.2304921

C. A. Ortiz Daza and F. A. Simanca, “Enseñanza de la derivada mediada por objetos de aprendizaje”, Rev. vínculos, vol. 13, no. 2, pp. 159-172, 2016. https://doi.org/10.14483/2322939X.11666

A. Angulo, F. Martínez, y G. López, “Almacenamiento de energía usando ultra condensadores en sistemas fotovoltaicos autónomos”, Visión electrónica, vol. 11, no. 1, pp. 30-39, jun. 2017. https://doi.org/10.14483/22484728.12875

Cómo citar
Terán Rodríguez, S. A., Rojas Caicedo, F. J., & Inga Ortega, E. M. (2020). Estimaciones de ciclo de trabajo y radiación utilizando máximo punto de transferencia de carga para la optimización de un sistema fotovoltaico de 100KVA. Visión electrónica, 14(2). Recuperado a partir de https://revistas.udistrital.edu.co/index.php/visele/article/view/15829
Publicado: 2020-08-31
Sección
Visión Investigadora