The effect of frequency in the electrical stimulation of chondrocytes

El efecto de la frecuencia en la estimulación eléctrica de condrocitos

Palabras clave: Cartilage Explants, Chondrocytes, Computational model, Electric Fields, Frequency Dependence, Scaffolds (en_US)
Palabras clave: Explantes de cartílago, Condrocitos, Modelo Computacional, Campos Eléctricos, Dependencia de la Frecuencia, Andamios (es_ES)

Resumen (en_US)

Electrical stimulation is a non-invasive therapy used to stimulate chondrocyte dynamics: proliferation, migration, morphology and molecular synthesis. Some studies have evidenced the role of frequency in the generation of electric fields; however, the electrical stimulation sensed by chondrocytes when the frequency varies is not well-documented. Accordingly, a computational model was implemented to assess the frequency dependence of electric fields that stimulate chondrocytes. Cells were modelled in three different scenarios: monolayer cultures, cartilage explants and scaffolds. Chondrocytes were stimulated with 100 Vp-p at frequencies of 0.001, 1, 10, 50, 100 and 1000 kHz. Results showed that frequency is a relevant factor when considering the stimulation of biological samples, since electric fields increased as frequencies were higher. Moreover, chondrocytes experienced different electric fields in both cytoplasm and extracellular environment. This model provides relevant information about the electrical parameters to stimulate cells; in fact, it could enhance experimental procedures, predicting the stimulation that improves chondrocyte dynamics. Electric fields are a promising tool to maintain either well-structured chondrocytes or biomimetic materials used in regenerative therapies such as autologous implantation to treat hyaline cartilage injuries.

Resumen (es_ES)

La estimulación eléctrica es una terapia no invasiva utilizada para estimular la dinámica de los condrocitos: proliferación, migración, morfología y síntesis molecular. Algunos estudios han evidenciado el rol de la frecuencia en la generación de campos eléctricos; sin embargo, la estimulación eléctrica percibida por el condrocito cuando la frecuencia varia no está bien documentada. Por esto, se implementó un modelo computacional para evaluar la dependencia de la frecuencia de los campos eléctricos que estimulan los condrocitos. Las células fueron modeladas en tres escenarios diferentes: cultivos monocapa, explantes de cartílago y andamios. Los condrocitos fueron estimulados con 100 Vp-p a frecuencias de 0.001, 1, 10, 50, 100 y 1000 kHz. Los resultados mostraron que la frecuencia es un factor relevante para estimular muestras biológicas, ya que los campos eléctricos aumentaron a medida que la frecuencia se incrementó. Además, los condrocitos experimentaron diferentes campos eléctricos tanto en el citoplasma como en el ambiente extracelular. Este modelo provee información relevante acerca de los parámetros eléctricos para estimular células; de hecho, este puede mejorar los procedimientos experimentales, prediciendo la estimulación que mejora la dinámica de los condrocitos. Los campos eléctricos son una herramienta prometedora para mantener ya sea condrocitos bien caracterizados o materiales biomiméticos usados en terapias regenerativas tales como la implantación autóloga para tratar lesiones del cartílago hialino.

Descargas

La descarga de datos todavía no está disponible.

Referencias

A. Bhosale and J. Richardson, "Articular cartilage: Structure, injuries and review of management”, Br. Med. Bull., vol. 87, no. 1, pp. 77-95, 2008. https://doi.org/10.1093/bmb/ldn025

J. Vaca-González, M. Gutiérrez, and D. Garzón-Alvarado, "Cartílago articular: estructura, patologías y campos eléctricos como alternativa terapéutica. Revisión de conceptos actuales”, Rev. Colomb. Ortop. y Traumatol., vol. 31, no. 4, pp. 202-210, 2017. https://doi.org/10.1016/j.rccot.2017.06.002

F. Burdan et al., "Morphology and physiology of the epiphyseal growth plate”, Folia Histochem Cytobiol, vol. 47, no. 1, pp. 5-16, 2009. https://doi.org/10.2478/v10042-009-0007-1

J. Becerra, J. Andrades, E. Guerado, P. Zamora-Navas, J. Lopez-Puertas, and A. Reddi, "Articular cartilage: structure and regeneration”, Tissue Eng Part B Rev, vol. 16, no. 6, pp. 617-627, 2010. https://doi.org/10.1089/ten.teb.2010.0191

E. Mackie, L. Tatarczuch, and M. Mirams, "The skeleton: a multi-functional complex organ: the growth plate chondrocyte and endochondral ossification”, J Endocrinol, vol. 211, no. 2, pp. 109-121, 2011. https://doi.org/10.1530/JOE-11-0048

C. Lee, S. Grad, M. Wimmer, and M. Alini, "The influence of mechanical stimuli on articular cartilage tissue engineering”, in Topics in Tissue Engineering, vol. 2, Davos Platz, Switzerland: Ashammakhi, N and Reis R, 2006, pp. 1-32.

Z. Lukacs, "Mucopolysaccharides”, in Laboratory Guide to the Methods in Biochemical Genetics, 1st ed., N. Blau., Ed. Heidelberg: Springer, 2008, pp. 287-325. https://doi.org/10.1007/978-3-540-76698-8_17

J. S. Temenoff and A. G. Mikos, "Review: Tissue engineering for regeneration of articular cartilage”, Biomaterials, vol. 21, no. 5, pp. 431-440, 2000. https://doi.org/10.1016/S0142-9612(99)00213-6

P. Armstrong, C. Brighton, and A. Star, "Capacitively coupled electrical stimulation of bovine growth plate chondrocytes grown in pellet form”, J Orthop Res, vol. 6, no. 2, pp. 265-271, 1988. https://doi.org/10.1002/jor.1100060214

C. T. Brighton, L. Jensen, S. R. Pollack, B. S. Tolin, and C. C. Clark, "Proliferative and synthetic response of bovine growth plate chondrocytes to various capacitively coupled electrical fields”, J Orthop Res, vol. 7, no. 5, pp. 759-765, 1989. https://doi.org/10.1002/jor.1100070519

C. Brighton, G. Pfeffer, and S. Pollack, "In vivo growth plate stimulation in various capacitively coupled electrical fields”, J. Orthop. Res., vol. 1, no. 1, pp. 42-49, 1983. https://doi.org/10.1002/jor.1100010106

C. Brighton and P. Townsend, "Increased cAMP production after short-term capacitively coupled stimulation in bovine growth plate chondrocytes”, J Orthop Res, vol. 6, no. 4, pp. 552-558, 1988. https://doi.org/10.1002/jor.1100060412

C. Brighton, A. Unger, and J. Stambough, "In vitro growth of bovine articular cartilage chondrocytes in various capacitively coupled electrical fields”, J Orthop Res, vol. 2, no. 1, pp. 15-22, 1984. https://doi.org/10.1002/jor.1100020104

C. Brighton, W. Wang, and C. Clark, "Up-regulation of matrix in bovine articular cartilage explants by electric fields”, Biochem Biophys Res Commun, vol. 342, no. 2, pp. 556-561, 2006. https://doi.org/10.1016/j.bbrc.2006.01.171

C. Brighton, W. Wang, and C. Clark, "The effect of electrical fields on gene and protein expression in human osteoarthritic cartilage explants”, J Bone Jt. Surg Am, vol. 90, no. 4, pp. 833-848, 2008. https://doi.org/10.2106/JBJS.F.01437

C. T. Brighton, G. B. Pfeffer, and S. R. Pollack, "In vivo growth plate stimulation in various capacitively coupled electrical fields”, J. Orthop. Res., vol. 1, no. 1, pp. 42-49, 1983. https://doi.org/10.1002/jor.1100010106

M. Forgon, V. Vámhidy, and L. Kellényi, "Bone growth accelerated by stimulation of the epiphyseal plate with electric current”, Arch. Orthop. Trauma. Surg., vol. 104, no. 2, pp. 121-124, 1985. https://doi.org/10.1007/BF00454252

S. Nakasuji, Y. Morita, and K. Anaka, "Effect of Pulse Electric Field Stimulation on Chondrocytes”, Asian Pacific Conf. Mater. Mech., vol. 1, pp. 13-16, 2009.

O. Sato and M. Akai, "Effect of direct-current stimulation on the growth plate”, Arch Orthop Trauma Surg, vol. 109, pp. 9-13, 1989. https://doi.org/10.1007/BF00441903

N. Szasz, H. Hung, S. Sen, and A. Grodzinsky, "Electric field regulation of chondrocyte biosynthesis in agarose gel constructs”, in 49th Annual Meeting of the Orthopaedic Research Society, 2003.

J. J. Vaca-González, J. Escobar, J. Guevara, Y. Hata, G. Gallego Ferrer, and D. A. Garzón-Alvarado, "Capacitively coupled electrical stimulation of rat chondroepiphysis explants: A histomorphometric analysis”, Bioelectrochemistry, vol. 126, pp. 1-11, 2019. https://doi.org/10.1016/j.bioelechem.2018.11.004

J. J. Vaca-González, J. Guevara, J. Vega, and D. A. Garzón-Alvarado, "An in vitro chondrocyte electrical stimulation framework: a methodology to calculate electric fields and modulate proliferation, cell death and glycosaminoglycan synthesis”, Cell. Mol. Bioeng., vol. 9, no. 1, pp. 116-126, 2016. https://doi.org/10.1007/s12195-015-0419-2

W. Wang, Z. Wang, G. Zhang, C. C. Clark, and C. T. Brighton, "Up-regulation of chondrocyte matrix genes and products by electric fields”, Clin. Orthop. Relat. Res., no. 427 SUPPL., pp. 163-173, 2004. https://doi.org/10.1097/01.blo.0000143837.53434.5c

C. Grosse and H. Schwan, "Cellular membrane potentials induced by alternating fields”, Biophys. J., vol. 63, no. 6, pp. 1632-1642, Dec. 1992. https://doi.org/10.1016/S0006-3495(92)81740-X

T. Kotnik, F. Bobanović, and D. Miklavcic, "Sensitivity of transmembrane voltage induced by applied electric fields-A theoretical analysis”, Bioelectrochemistry Bioenerg., vol. 43, no. 2, pp. 285-291, 1997. https://doi.org/10.1016/S0302-4598(97)00023-8

W. Krassowska and J. C. Neu, "Response of a single cell to an external electric field”, Biophys. J., vol. 66, no. 6, pp. 1768-1776, 1994. https://doi.org/10.1016/S0006-3495(94)80971-3

B. Valič et al., "Effect of electric field induced transmembrane potential on spheroidal cells: theory and experiment”, Eur. Biophys. J., vol. 32, no. 6, pp. 519-528, 2003. https://doi.org/10.1007/s00249-003-0296-9

K. Maswiwat, D. Wachner, and J. Gimsa, "Effects of cell orientation and electric field frequency on the transmembrane potential induced in ellipsoidal cells”, Bioelectrochemistry, vol. 74, no. 1, pp. 130-141, 2008. https://doi.org/10.1016/j.bioelechem.2008.06.001

J. Gimsa and D. Wachner, "Analytical description of the transmembrane voltage induced on arbitrarily oriented ellipsoidal and cylindrical cells”, Biophys. J., vol. 81, no. 4, pp. 1888-1896, Oct. 2001. https://doi.org/10.1016/S0006-3495(01)75840-7

T. Taghian, D. A. Narmoneva, and A. B. Kogan, "Modulation of cell function by electric field : a high-resolution analysis”, R. Soc., vol. 12, no. 107, pp. 21-25, 2015. https://doi.org/10.1098/rsif.2015.0153

J. J. Vaca-González, "The effect of electric fields on hyaline cartilage: an in vitro and in silico study”, Universidad Nacional de Colombia, 2019.

J. J. Vaca-González et al., "Effect of electrical stimulation on chondrogenic differentiation of mesenchymal stem cells cultured in hyaluronic acid - Gelatin injectable hydrogels”, Bioelectrochemistry, vol. 134, pp. 1-11, 2020. https://doi.org/10.1016/j.bioelechem.2020.107536

M. A. Golombeck, H. C. Riedel, and O. Dössel, "Calculation of the dielectric properties of biological tissue using simple models of cell patches”, Biomed. Tech. Eng., vol. 47, pp. 253-256, 2002. https://doi.org/10.1515/bmte.2002.47.s1a.253

C. Gabriel, "Compilation of the Dielectric Properties of Body Tissues at RF and Microwave Frequencies.”, London, UK, 1996. https://doi.org/10.21236/ADA303903

J. F. Escobar, "Evaluación in vitro del efecto de una estimulación con campos magnéticos a condrocitos”, Universidad Nacional de Colombia, 2019.

C. Trainito, "Study of cell membrane permeabilization induced bypulsed electric field - electrical modeling andcharacterization on biochip”, Universite Paris-Saclay, 2016.

C. Litalien and P. Beaulieu, "Molecular Mechanisms of Drug Actions: From Receptors to Effectors”, in Pediatric Critical Care, B. P. Fuhrman and J. J. B. T.-P. C. C. (Fourth E. Zimmerman, Eds. Saint Louis: Mosby, 2011, pp. 1553-1568. https://doi.org/10.1016/B978-0-323-07307-3.10117-X

C. Matta, R. Zákány, and A. Mobasheri, "Voltage-dependent calcium channels in chondrocytes: roles in health and disease”, Curr. Rheumatol. Rep., vol. 17, no. 43, pp. 1-11, 2015. https://doi.org/10.1007/s11926-015-0521-4

J. Xu, W. Wang, C. Clark, and C. Brighton, "Signal transduction in electrically stimulated articular chondrocytes involves translocation of extracellular calcium through voltage-gated channels”, Osteoarthr. Cartil., vol. 17, no. 3, pp. 397-405, 2009. https://doi.org/10.1016/j.joca.2008.07.001

W. A. Catterall, "Voltage-gated calcium channels”, Cold Spring Harb. Perspect. Biol., vol. 3, no. 8, pp. 1-23, Aug. 2011. https://doi.org/10.1101/cshperspect.a003947

T. Ning, K. Zhang, B. C. Heng, and Z. Ge, "Diverse effects of pulsed electrical stimulation on cells - with a focus on chondrocytes and cartilage regeneration”, Cells Mater., vol. 38, pp. 79-83, 2019. https://doi.org/10.22203/eCM.v038a07

J. F. Escobar, J. J. Vaca-González, J. M. Guevara, and D. A. Garzón-Alvarado, "Effect of magnetic and electric fields on plasma membrane of single cells: A computational approach”, Eng. Reports, vol. 2, no. 2, pp. 1-14, Feb. 2020. https://doi.org/10.1002/eng2.12125

A. Weizel et al., "Numerical simulation of the electric field distribution in an electrical stimulation device for scaffolds settled with cartilaginous cells”, in 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2019, pp. 6481-6484. https://doi.org/10.1109/EMBC.2019.8857760

B. Hiemer et al., "Effect of electric stimulation on human chondrocytes and mesenchymal stem cells under normoxia and hypoxia”, Mol. Med. Rep., vol. 18, no. 2, pp. 2133-2141, Aug. 2018. https://doi.org/10.3892/mmr.2018.9174

O. Akanji, D. Lee, and D. Bader, "The effects of direct current stimulation on isolated chondrocytes seeded in 3D agarose constructs”, Biorheology, vol. 45, no. 3-4, pp. 229-243, 2008. https://doi.org/10.3233/BIR-2008-0473

Cómo citar
Vaca González, J. J., Escobar Huertas, J. F., & Garzón Alvarado, D. A. (2020). El efecto de la frecuencia en la estimulación eléctrica de condrocitos. Visión electrónica, 14(1). Recuperado a partir de https://revistas.udistrital.edu.co/index.php/visele/article/view/16028
Publicado: 2020-01-31
Sección
Visión Investigadora