DOI:

https://doi.org/10.14483/22484728.17425

Publicado:

2021-01-30

Número:

Vol. 15 Núm. 1 (2021)

Sección:

Visión Investigadora

Classification of Facial Expression of Post-Surgical Pain in Children

Evaluación de redes neuronales convolucionales

Clasificación de la expresión facial de dolor postquirúrgico infantil

Autores/as

Palabras clave:

Artificial intelligence, Assessment tools, Facial expression, Pain, Pediatrics (en).

Palabras clave:

Inteligencia artificial, Herramientas de evaluación, Expresión facial, Dolor, Pediatría (es).

Descargas

Resumen (en)

There are certain difficulties in differentiating between children's facial expression related to pain and other stimuli. In addition, the limited communication ability of children in the preverbal stage leads to misdiagnosis when the child feels pain, for example, post-surgical conditions. In this article, a classification approach of facial expression of child pain is presented based on models of pre-trained convolutional neuronal networks from the study carried out in a Colombian hospital of level 4 (Hospital Universitario San Vicente Fundación), in the recovery areas of child surgery services. AlexNet and VGG (16, 19 and Face) networks are evaluated in the own dataset using the FLACC scale and their performances are compared in three experiments. The results show that the VGG-19 model achieves the best performance (92.9%) compared to the other networks. The effectiveness of the model and transfer learning for the classification of facial expression of child pain shows a promising solution for the assessment of post-surgical pain.

Resumen (es)

Existen ciertas dificultades para diferenciar entre la expresión facial infantil relacionada al dolor con la de otros estímulos. Además, la limitada capacidad de comunicación de los niños en la etapa preverbal conlleva a un error de diagnóstico cuando el niño siente dolor, por ejemplo, afecciones posteriores a las cirugías. En este artículo, se presenta un enfoque de clasificación de la expresión facial de dolor infantil basado en modelos de redes neuronales convolucionales pre-entrenadas a partir del estudio realizado en un hospital colombiano de nivel 4 (Hospital Universitario San Vicente Fundación), en las áreas de recuperación de los servicios de cirugía infantil. Se evalúan las redes AlexNet y VGG (16, 19 y Face) en el conjunto de datos propio utilizando la escala FLACC y se comparan sus rendimientos en tres experimentos. Los resultados muestran que el modelo VGG-19 logra el mejor rendimiento (92.9%) en comparación con las demás redes. La eficacia del modelo y el aprendizaje por transferencia para la clasificación de la expresión facial de dolor infantil muestran una solución prometedora para la evaluación del dolor postquirúrgico.

Referencias

H. Y. Vivian-Ip, A. Abrishami, P. W. H. Peng, J. Wong, F. Chung, “Predictors of Postoperative Pain and Analgesic Consumption: A Qualitative Systematic review”, Anesthesiology, vol. 111, no. 3, pp. 657–677, 2009. https://doi.org/10.1097/ALN.0b013e3181aae87a

O. L. Elvir-Lazo, P. F. White, “Postoperative pain management after ambulatory surgery: role of multimodal analgesia”, Anesthesiology Clinics, vol. 28, no. 2, pp. 217–224, 2010. https://doi.org/10.1016/j.anclin.2010.02.011

American Academy of Pain Medicine, “Get the facts on pain”. [Online]. Available at http://www.painmed.org/patientcenter/facts-on-pain/

P. J. Mathew, J. L. Mathew, “Assessment and management of pain in infants”, Postgraduate Medical Journal, vol. 79, no. 934, pp. 438–43, 2003. http://dx.doi.org/10.1136/pmj.79.934.438

M. Clarett, “Escalas de evaluación de dolor y protocolo de analgesia en terapia intensiva”, Clínica y Maternidad Suizo Argentina Instituto Argentino de Diagnóstico y Tratamiento, Buenos Aires, Argentina, 2012.

L. J. Duhn, J. M. Medves, “A systematic integrative review of infant pain assessment tools”, Advance in Neonatal Care, vol. 4, no. 3, pp. 126–140, 2004. 10.1016/j.adnc.2004.04.005

R. Slater, A. Cantarella, L. Franck, J. Meek, M. Fitzgerald, “How Well Do Clinical Pain Assessment Tools Reflect Pain in Infants?” PLoS Medicine, vol. 5, no. 6, p. 129, 2008. https://doi.org/10.1371/journal.pmed.0050129

N. C. de Knegt. et al., “Behavioral Pain Indicators in People With Intellectual Disabilities: A Systematic Review”, The Journal of Pain, vol. 14, no. 9, pp. 885–896, 2013. https://doi.org/10.1016/j.jpain.2013.04.016

G. Zamzmi, “An approach for automated multimodal analysis of infants’ pain”, 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 4148–4153, 2016.

V. Guruswamy, “Assessment of pain in nonverbal children”, Association of Paediatric Anaesthetists of Great Britain and Ireland, no. 41, p. 33, 2014.

Registered Nurses’ Association of Ontario, “Assessment and management of pain”, vol. 3. Toronto, Canada, 2013.

R. Srouji, S. Ratnapalan, S. Schneeweiss, “Pain in Children: Assessment and Nonpharmacological Management”, International Journal of Pediatrics, 2010. https://doi.org/10.1155/2010/474838

K. Brand, A. Al-Rais, “Pain assessment in children”, Anaesthesia and Intensive Care Medicine, vol. 20, no. 6, pp. 314–317, 2019. https://doi.org/10.1016/j.mpaic.2019.03.003

D. Freund, B. N. Bolick, “Assessing a Child’s Pain”, AJN, American Journal of Nursing, vol. 119, no. 5, pp. 34–41, 2019. 10.1097/01.NAJ.0000557888.65961.c6

M. Pérez, G. A. Cavanzo Nisso F. Villavisán Buitrago, “Sistema embebido de detección de movimiento mediante visión artificial ", Visión Electrónica, vol. 12, no. 1, pp. 97-101, 2018. https://doi.org/10.14483/22484728.15087

J. F. Pantoja Benavides, F. N. Giraldo Ramos, Y. S. Rubio Valderrama, V. M. Rojas Lara, “Segmentación de imágenes utilizando campos aleatorios de Markov", Visión Electrónica, vol. 4, no. 2, pp. 5-16, 2010. https://doi.org/10.14483/22484728.432

J. Forero C., C. Bohórquez, V. H. Ruiz, “Medición automatizada de piezas torneadas usando visión artificial", Visión Electrónica, vol. 7, no. 2, pp. 36-44, 2013. https://doi.org/10.14483/22484728.5507

S. Brahnam, C.-F. Chuang, R. S. Sexton, F. Y. Shih, “Machine assessment of neonatal facial expressions of acute pain”, Decision Support System, vol. 43, no. 4, pp. 1242–1254, 2007. https://doi.org/10.1016/j.dss.2006.02.004

A. Beltramini, K. Milojevic, D. Pateron, “Pain Assessment in Newborns, Infants, and Children”, Pediatric. Annals, vol. 46, no. 10, pp. 387–395, 2017. https://doi.org/10.3928/19382359-20170921-03

X. Cong, J. M. McGrath, R. M. Cusson, D. Zhang, “Pain Assessment and Measurement in Neonates: An Ipdated Review”, Advances in Neonatal Care, vol. 13, no. 6, pp. 379–395, 2013. 10.1097/ANC.0b013e3182a41452

C. L. von Baeyer L. J. Spagrud, “Systematic review of observational (behavioral) measures of pain for children and adolescents aged 3 to 18 years”, Pain, vol. 127, no. 1–2, pp. 140–150, 2007. https://doi.org/10.1016/j.pain.2006.08.014

J. Zieliński, M. Morawska-Kochman, T. Zatoński, “Pain assessment and management in children in the postoperative period: A review of the most commonly used postoperative pain assessment tools, new diagnostic methods and the latest guidelines for postoperative pain therapy in children”, Advances in Clinical and Experimental Medicine, vol. 29, no. 3, pp. 365–374, 2020. 10.17219/acem/112600

C. Greco, C. Berde, “Pain Management in Children”, Gregory’s Pediatric Anesthesia, Wiley, pp. 929–954, 2020. https://doi.org/10.1002/9781119371533.ch37

G. Zamzmi, R. Kasturi, D. Goldgof, R. Zhi, T. Ashmeade, Y. Sun, “A Review of Automated Pain Assessment in Infants: Features, Classification Tasks, and Databases”, IEEE Reviews in Biomedical. Engineering, vol. 11, pp. 77–96, 2017. 10.1109/RBME.2017.2777907

T. Voepel-Lewis, J. Zanotti, J. A. Dammeyer, S. Merkel, “Reliability and Validity of the Face, Legs, Activity, Cry, Consolability Behavioral Tool in Assessing Acute Pain in Critically Ill Patients”, American Journal of Critical Care, vol. 19, no. 1, pp. 55–61, 2010. https://doi.org/10.4037/ajcc2010624

G. Guillen, “Digital Image Processing with Python and OpenCV”, Sensor Projects with Raspberry Pi, pp. 97–140, 2019. https://doi.org/10.1007/978-1-4842-5299-4_5

R. Momtahina, M. Hossain, “Image Capturing and Automatic Face Recognition”, Dhaka, Bangladesh, 2019.

O. Subea, G. Suciu, “Facial Analysis Method for Pain Detection”, International Conference on Future Access Enablers of Ubiquitous and Intelligent Infrastructures, pp. 167–180, 2019. https://doi.org/10.1007/978-3-030-23976-3_17

D. E. King, “Dlib-ml: A Machine Learning Toolkit”, The Journal of Machine Learning Research, vol. 10, pp. 1755–1758, 2009. 10.1145/1577069.1755843

K. He, X. Zhang, S. Ren, J. Sun, “Deep Residual Learning for Image Recognition”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

O. M. Parkhi, A. Vedaldi, A. Zisserman, “Deep face recognition”, Proceedings of the British Machine Vision Conference (BMVC), vol. 1, no. 3, p. 6, 2015. https://dx.doi.org/10.5244/C.29.41

S. J. Pan, Q. Yang, “A Survey on Transfer Learning”, IEEE Transactions on knowledge and data engineering, vol. 22, no. 10, pp. 1345-1359, 2010. 10.1109/TKDE.2009.191

F. Zhuang, “A Comprehensive Survey on Transfer Learning”, Proceedings of the IEEE, vol. 109, no. 1, pp. 1-34, 2019. 10.1109/JPROC.2020.3004555

H.-W. Ng, V. D. Nguyen, V. Vonikakis, S. Winkler, “Deep Learning for Emotion Recognition on Small Datasets using Transfer Learning”, Proceedings of the 2015 ACM on International Conference on Multimodal Interaction (ICMI ’15), pp. 443–449, 2015. https://doi.org/10.1145/2818346.2830593

W. Ding, “Audio and face video emotion recognition in the wild using deep neural networks and small datasets”, Proceedings of the 18th ACM International Conference on Multimodal Interaction (ICMI ’1), pp. 506–513, 2016. https://doi.org/10.1145/2993148.2997637

K. Zhang, L. Tan, Z. Li, Y. Qiao, “Gender and smile classification using deep convolutional neural networks”, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2016.

V. Campos, A. Salvador, B. Jou, X. Giró-i-Nieto, B. Jou, “Diving Deep into Sentiment: Understanding Fine-tuned CNNs for Visual Sentiment Prediction”, Proceedings of the 1st International Workshop on Affect & Sentiment in Multimedia (ASM '15), pp. 57-62, 2015. https://doi.org/10.1145/2813524.2813530

H. Ding, S. K. Zhou, R. Chellappa, “FaceNet2ExpNet: Regularizing a Deep Face Recognition Net for Expression Recognition”, 12th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2017), pp. 118–126, 2017. 10.1109/FG.2017.23

F. Wang, “Regularizing face verification nets for pain intensity regression”, in 2017 IEEE International Conference on Image Processing (ICIP), pp. 1087–1091, 2017. 10.1109/ICIP.2017.8296449

M. S. Hossain, G. Muhammad, “Emotion recognition using deep learning approach from audio–visual emotional big data”, Information Fusion, vol. 49, pp. 69–78, 2019. https://doi.org/10.1016/j.inffus.2018.09.008

Cómo citar

APA

Jiménez-Moreno, C., Aristizábal-Nieto, J. K., & Giraldo-Salazar, O. L. (2021). Classification of Facial Expression of Post-Surgical Pain in Children: Evaluation of Convolutional Neural Networks. Visión electrónica, 15(1), 7–16. https://doi.org/10.14483/22484728.17425

ACM

[1]
Jiménez-Moreno, C., Aristizábal-Nieto, J.K. y Giraldo-Salazar, O.L. 2021. Classification of Facial Expression of Post-Surgical Pain in Children: Evaluation of Convolutional Neural Networks. Visión electrónica. 15, 1 (ene. 2021), 7–16. DOI:https://doi.org/10.14483/22484728.17425.

ACS

(1)
Jiménez-Moreno, C.; Aristizábal-Nieto, J. K.; Giraldo-Salazar, O. L. Classification of Facial Expression of Post-Surgical Pain in Children: Evaluation of Convolutional Neural Networks. Vis. Electron. 2021, 15, 7-16.

ABNT

JIMÉNEZ-MORENO, C.; ARISTIZÁBAL-NIETO, J. K.; GIRALDO-SALAZAR, O. L. Classification of Facial Expression of Post-Surgical Pain in Children: Evaluation of Convolutional Neural Networks. Visión electrónica, [S. l.], v. 15, n. 1, p. 7–16, 2021. DOI: 10.14483/22484728.17425. Disponível em: https://revistas.udistrital.edu.co/index.php/visele/article/view/17425. Acesso em: 2 dic. 2022.

Chicago

Jiménez-Moreno, Carolina, Jenny Kateryne Aristizábal-Nieto, y Olga Lucía Giraldo-Salazar. 2021. «Classification of Facial Expression of Post-Surgical Pain in Children: Evaluation of Convolutional Neural Networks». Visión electrónica 15 (1):7-16. https://doi.org/10.14483/22484728.17425.

Harvard

Jiménez-Moreno, C., Aristizábal-Nieto, J. K. y Giraldo-Salazar, O. L. (2021) «Classification of Facial Expression of Post-Surgical Pain in Children: Evaluation of Convolutional Neural Networks», Visión electrónica, 15(1), pp. 7–16. doi: 10.14483/22484728.17425.

IEEE

[1]
C. Jiménez-Moreno, J. K. Aristizábal-Nieto, y O. L. Giraldo-Salazar, «Classification of Facial Expression of Post-Surgical Pain in Children: Evaluation of Convolutional Neural Networks», Vis. Electron., vol. 15, n.º 1, pp. 7–16, ene. 2021.

MLA

Jiménez-Moreno, C., J. K. Aristizábal-Nieto, y O. L. Giraldo-Salazar. «Classification of Facial Expression of Post-Surgical Pain in Children: Evaluation of Convolutional Neural Networks». Visión electrónica, vol. 15, n.º 1, enero de 2021, pp. 7-16, doi:10.14483/22484728.17425.

Turabian

Jiménez-Moreno, Carolina, Jenny Kateryne Aristizábal-Nieto, y Olga Lucía Giraldo-Salazar. «Classification of Facial Expression of Post-Surgical Pain in Children: Evaluation of Convolutional Neural Networks». Visión electrónica 15, no. 1 (enero 30, 2021): 7–16. Accedido diciembre 2, 2022. https://revistas.udistrital.edu.co/index.php/visele/article/view/17425.

Vancouver

1.
Jiménez-Moreno C, Aristizábal-Nieto JK, Giraldo-Salazar OL. Classification of Facial Expression of Post-Surgical Pain in Children: Evaluation of Convolutional Neural Networks. Vis. Electron. [Internet]. 30 de enero de 2021 [citado 2 de diciembre de 2022];15(1):7-16. Disponible en: https://revistas.udistrital.edu.co/index.php/visele/article/view/17425

Descargar cita

Visitas

139

Dimensions


PlumX


Descargas

Los datos de descargas todavía no están disponibles.