DOI:
https://doi.org/10.14483/22484728.17985Publicado:
2021-05-03Número:
Vol. 15 Núm. 1 (2021)Sección:
Visión InvestigadoraGenerador axial para un generador eólico de baja potencia, selección, diseño y simulación en COMSOL multiphysic
Axial generator for a low power wind generator, selection, design and simulation in COMSOL multiphysic
Palabras clave:
Doble rotor, Elementos finitos, Densidad de flujo, Topología de generador, Baja potencia (es).Palabras clave:
Double rotor, Finite elements, Flux density, Generator topology, Low power (en).Descargas
Resumen (es)
Los generadores de flujo axial son máquinas utilizadas en sistemas de generación eólica, y dado el creciente interés por las energías renovables a pequeña escala se requiere buscar nuevas configuraciones que permitan enfrentar el aumento de las necesidades energéticas a nivel mundial. En este documento se analiza la selección, diseño y simulación de tres topologías de un generador de imanes permanentes de flujo axial de doble rotor para aplicaciones de baja velocidad y baja potencia (10 watios), las cuales se modelan aplicando el método de elementos finitos en el software COMSOL 2D, como aporte al proyecto de investigación Topologías de Generador Eólico de Baja Potencia, gracias a este método es posible optimizar el diseño y observar la densidad de flujo magnético en los dientes del estator, entrehierro y polos magnéticos. Los resultados obtenidos se comparan tomando como referencia la potencia de salida generada bajo las cargas de 10, 40,100, 150 y 260 ohmios, además indican que las topologías 1 y 3 (puramente sin núcleo y estado ranurado) presentan un mejor comportamiento tanto en vacío como bajo carga, al buscar reducir el peso de la maquina implementado una matriz tipo HALBACH en los polos magnéticos de los rotores.
Resumen (en)
Axial flux generators are machines used in wind generation systems, and given the growing interest in small-scale renewable energy, it is required to look for new configurations to address the increase in energy needs globally. This document discusses the selection, design and simulation of three topologies of a dual-rotor permanent axial flux magnet generator for low-speed, low-power (10 watt) applications, which are modeled by applying the finite element method in COMSOL 2D software, as a contribution to the Low Power Wind Generator Topologies research project. Thanks to this method it is possible to optimize the design and observe the density of magnetic flux in the teeth of the stator, air gap and magnetic poles. The results obtained are compared taking as reference the output power generated under the loads of 10, 40,100, 150 and 260 ohms, in addition indicate that topologies 1 and 3 (purely coreless and slotted stator) exhibit better behavior both in no-load and under load, when looking to reduce the weight of the machine implemented a HALBACH type matrix on the magnetic poles of the rotors.
Referencias
A. Nataraj and B. Ramasamy, "Modeling and FEA analysis of axial flux PMG for low-speed wind turbine applications", International Conference on Technological Advancements in Power and Energy (TAP Energy), pp. 1-5, Kollam, 2017. https://doi.org/10.1109/TAPENERGY.2017.8397290
M. Carrillo, C. Claudio, A. Mayorga, "Caracterización de un generador de flujo axial para aplicaciones en energía eólica", Revista de Ciencia y Tecnología, INGENIUS, no. 19, pp. 19-28, 2018. https://doi.org/10.17163/ings.n19.2018.02
S. S. Laxminarayan, M. Singh, A. H. Saifee and A. Mital, "Design, Modeling and Simulation of Variable Speed Axial Flux Permanent Magnet Wind Generator", Sustainable Energy Technologies and Assessments, vol. 19, pp. 114-124, 2017. https://doi.org/10.1016/j.seta.2017.01.004
G. Ahmad and U. Amin, "Design, Construction and Study of Small-Scale Vertical Axis Wind Turbine based on a Magnetically Levitated Axial Flux Permanent Magnet Generator", Renewable Energy, vol. 101, pp. 286-292, 2016. https://doi.org/10.1016/j.renene.2016.08.027
M. Castillo García, "Diseño Electromagnético de un Generador Eléctrico para Turbina Eólica de 100 kW", thesis, Universidad Politécnica de Madrid, Madrid, España, 2017.
C. F. González Velázquez, "Optimización de Banco de Pruebas y Sistema de Monitoreo de Aerogenerador de Baja Potencia", thesis, Centro de Ingeniería y Desarrollo Industrial, Santiago de Querétaro, 2017.
J. Kappatou, G. Zalokostas and D. Spytatos, "3-D FEM Analysis, Prototyping and Tests of an Axial Flux Permanent-Magnet Wind Generator", Energies, vol. 10, no. 9, 2017. https://doi.org/10.3390/en10091269
R. D. Chavan and V. N. Bapat, "The study of different topologies of Axial Flux Permanent Magnet generator", International Conference on Automatic Control and Dynamic Optimization Techniques (ICACDOT), pp. 202-206, Pune, 2016. https://doi.org/10.1109/ICACDOT.2016.7877579
T. Asefi, J. Faiz and M. A. Khan, "Design of Dual Rotor Axial Flux Permanent Magnet Generators with Ferrite and Rare-Earth Magnets", 18th International Power Electronics and Motion Control Conference (PEMC), Budapest, 2018. https://doi.org/10.1109/EPEPEMC.2018.8522004
Yicheng Chen, Pragasen Pillay and A. Khan, "PM wind generator comparison of different topologies", Conference Record of the 2004 IEEE Industry Applications Conference, 2004. 39th IAS Annual Meeting., pp. 1405-1412 vol. 3, 2004. https://doi.org/10.1109/IAS.2004.1348606
R. Rusmana, A. A. Melkias, N. Nurrohman and I. M. W. Kastawan, "Voltage Generation Characteristics of an Axial Flux Permanent Magnet (AFPM) Generator", IOP Conference Series: Materials Science and Engineering, ICIEVE, Indonesia, 2019. https://doi.org/10.1088/1757-899X/830/4/042019
W. A. López-Contreras, J. D. Rairán-Antolines, “Design of a magnetic encoder using Hall effect”, Visión Electrónica, vol. 13, no. 2, pp. 254–261, 2019. https://doi.org/10.14483/22484728.15180
I. M. Kastawan and R. Rusmana, "Voltage Generation of Three-Phase Double Sided Internal Stator Axial Flux Permanent Magnet (AFPM) Generator", IOP Conference Series: Materials Science and Engineering, 1st Annual Applied Science and Engineering Conference, Indonesia, 2017. https://doi.org/10.1088/1757-899X/180/1/012105
H. Gör and E. Kurt, "Preliminary Studies of a New Permanent Magnet Generator (PMG) with the Axial and Radial Flux Morphology", International Journal of Hydrogen Energy, vol. 41, no. 17, pp. 7005-7018, 2016. https://doi.org/10.1016/j.ijhydene.2015.12.195
H. Gor and E. Kurt, "Waveform Characteristics and Losses of a New Double-Sided Axial and Radial Flux Generator", International Journal of Hydrogen Energy, vol. 41, no. 29, pp. 12512-12524, 2016. https://doi.org/10.1016/j.ijhydene.2015.12.172
A. Habib, H. Che, N. Rahim, M. Tousizadeh and E. Sulaiman, "A fully coreless Multi-Stator Multi-Rotor (MSMR) AFPM generator with combination of conventional and Halbach magnet arrays", Alexandria Engineering Journal, vol. 59, no. 2, pp 589-600, 2020. https://doi.org/10.1016/j.aej.2020.01.039
N. Georgiev, "Study of Three-Phase Axial Flux Generators", 20th International Symposium on Electrical Apparatus and Technologies (SIELA), Bourgas, 2018. https://doi.org/10.1109/SIELA.2018.8447093
M. C. Reyes Caro, P. A. Córdoba Narváez, E. Rivas Trujillo, “Análisis de estabilidad transitoria y de pequeña señal en un sistema multimáquina: caso de estudio”, Revista Vínculos, vol. 15, no. 2, pp. 129–138, 2018. https://doi.org/10.14483/2322939X.13685
E. Celik, H. Gör, N. Öztürk and E. Kurt, "Application of Artificial Neural Network to Estimate Power Generation and Efficiency of a New Axial Flux Permanent Magnet Synchronous Generator", International Journal of Hydrogen Energy, vol. 42, no. 28, pp. 17692-17699, 2017. https://doi.org/10.1016/j.ijhydene.2017.01.168
C. A. González González, F. Arévalo Tapias, J. Hernández Gutiérrez, “Análisis de seguridad en redes LPWAN para dispositivos IoT”, Revista Vínculos, vol. 16, no. 2, pp. 252–261, 2019. https://doi.org/10.14483/2322939X.15712
M. R. Minaz and M. Celebi, "Design and Analysis of a New Axial Flux Coreless PMSG with Three Rotors and Double Stators", Results in Physics, vol. 7, pp. 183-188, 2016. https://doi.org/10.1016/j.rinp.2016.10.026
M. Dranca, M. Chirca and S. Breban, "Comparative Design Analysis of Axial Flux Permanent Magnet Direct-Drive Wind Generators", 11st International Symposium on Advanced Topics in Electrical Engineering, Technical University of Cluj-Napoca, Romania, 2019. https://doi.org/10.1109/ATEE.2019.8724928
N. E. Lastra, "Diseño y Construcción de un Generador de Flujo Axial con Imanes Permanentes de Bajo Costo para Aplicaciones Eólicas", XVIII Reunión de Trabajo en Procesamiento de la Información y Control, Bahía Blanca, Buenos Aires, 2019.
A. Rasekh, P. Sergeant and L. Vierendeels, "Fully Predictive Heat Transfer Coefficient Modeling of an Axial Flux Permanent Magnet Synchronous Machine with Geometrical Parameters of the Magnets", Applied Thermal Engineering, vol. 110, no. 5, pp. 1343-1357, 2016. https://doi.org/10.1016/j.applthermaleng.2016.09.019
M. Irfan, R. F. Ariyanto, L. Syafaah, A. Faruq and N. Subeki, "Stator Slotted Design of Axial Flux Permanent Magnet Generator for Low-Speed Turbine", IOP Conference Series: Materials Science and Engineering, ICEAT, Indonesia, 2020. https://doi.org/10.1088/1757-899X/821/1/012027
H. Polinder, "2 - Principles of electrical design of permanent magnet generators for direct drive renewable energy systems", Woodhead Publishing Limited, Delft University of Technology, pp. 30-50, 2013. https://doi.org/10.1533/9780857097491.1.30
V. N. Antipov, A. D. Grozov and A. V. Ivanova, "Design and Analysis of a New Axial Flux Permanent Magnet Synchronous Generator for Wind", IOP Conference Series: Materials Science and Engineering, International Scientific Electric Power Conference, Russia, 2019. https://doi.org/10.1016/j.rinp.2016.10.026
S. T. Piracoca, E. R. Trujillo and H. M. Quintero, "Comparative and Analysis of an Axial Flux Permanent Magnet Generator of Low Power Using the Finite Elements Method", International Journal of Mechanical and Production, vol. 10, no. 6, 2020. https://doi.org/10.24247/ijmperdjun20201453
M. M. Radulescu, S. Breban and M. Chirca, "Novel topologies of low-speed axial-flux permanent- magnet micro-wind generator", Acta Electrotechnica, vol. 57, no. 3, 2016. https://doi.org/10.4283/JMAG.2014.19.3.273
B. J. Chalmers and E. Spooner, "An axial-flux permanent-magnet generator for a gearless wind energy system",IEEE Transactions on Energy Conversion, vol. 14, no. 2, pp. 251-257, 1999. https://doi.org/10.1109/60.766991
A. R. Dehghanzadeh, V. Behjat and M. R. Banaei, "Dynamic Modeling of Wind Turbine Based Axial Flux Permanent Magnetic Synchronous Generator Connected to the Grid with Switch Reduced Converter", Ain Shams Engineering Journal, vol. 9, no. 1, pp. 125-135, 2015. https://doi.org/10.1016/j.asej.2015.11.002
N. Radwan-Praglowska, D. Borkowski and T. Wegiel, "Model of coreless axial flux permanent magnet generator", International Symposium on Electrical Machines (SME), pp. 1-6, Naleczow, 2017. https://doi.org/10.1109/ISEM.2017.7993568
S. Khan, S. Amin and S. S. Hussain Bukhari, "Design and Comparative Performance Analysis of Inner Rotor and Inner Stator Axial Flux Permanent Magnet Synchronous Generator for Wind Turbine Applications", International Conference on Computing-iCoMET, Sukkur IBA University, Pakistan, 2019. https://doi.org/10.1109/ICOMET.2019.8673537
M. Rudra, M. Kumar, “Review of machine learning models for credit scoring analysis”, Ingeniería Solidaria, vol. 16, no. 1, pp 1-16, 2020. https://doi.org/10.16925/2357-6014.2020.01.11
S. Anand, V. Verma, A. Aggarwal, “Dimensional multi-release software reliability modelling considering fault reduction factor under imperfect debugging”, Ingeniería Solidaría, vol. 14, no. 25, pp 1-12, 2018. https://doi.org/10.16925/.v14i0.2229
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2021 Visión electrónica
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
atribución- no comercial 4.0 International