DOI:
https://doi.org/10.14483/22484728.18377Publicado:
2018-08-13Número:
Vol. 1 Núm. 2 (2018): Edición especialSección:
Visión InvestigadoraWavelet transform to induction motor analysis: review
Transformada wavelet para análisis del motor de inducción: revisión
Palabras clave:
Induction motor, Transform, Wavelet (en).Palabras clave:
Motor de inducción, Transformada, Wavelet (es).Descargas
Resumen (en)
This study makes a revision of the most recent investigations that have implemented the wavelet transform by analyzing the electrical and mechanical variables of the induction motors. The investigations can be grouped into three main topics: diagnosis and detection of faults, control and detection systems and the classification of electromagnetic disturbances.
Resumen (es)
Este trabajo realiza una revisión de las investigaciones más recientes que han implementado la transformada wavelet analizando las variables eléctricas y mecánicas de los motores de inducción. Las investigaciones se pueden agrupar en tres temas principales: diagnóstico y detección de fallas; sistemas de control y detección y la clasificación de perturbaciones electromagnéticas.
Referencias
C. M. Londoño-Parra, J. L. Ramírez-Echavarría, and L. C. Ramírez, “Energy efficiency standards of induction motors, ¿are you prepared Latin America?”, Tecnológicas, no. 30, 2013, pp. 123–7799. https://doi.org/10.22430/22565337.91
A. A. Jaramillo-Matta and L. Guash Pesquer, “Estimación de parámetros y efectos de los huecos de tensión en la máquina de inducción trifásica”, thesis, Universitat Rovira i Virgili, Spain, 2011.
L. M. Nuñez-Ramirez, R. Galvez-Perez and H. E. Galvez-Perez, “Análisis Multiresolución”, Pesquimat, vol. 13, no. 2, 2010, pp. 59–76.
D. V. Ramana and S. Baskar, “Diverse fault detection techniques of three-phase induction motor — A review”, International Conference Emerging Technological Trends, 2016, pp. 1–8. https://doi.org/10.1109/ICETT.2016.7873779
Y. Gritli, S. B. Lee, F. Filippetti and L. Zarri, “Advanced Diagnosis of Outer Cage Damage in Double-Squirrel-Cage Induction Motors Under Time-Varying Conditions Based on Wavelet Analysis”, IEEE Transactions on Industry Applications, vol. 50, no. 3, 2014, pp. 1791–1800. https://doi.org/10.1109/TIA.2013.2285958
H. L. Schmitt, P. R. Scalassara, A. Goedtel and W. Endo, “Detecting Bearing Faults in Line-Connected Induction Motors Using Information Theory Measures and Neural Networks”, Journal of Control, Automation and Electrical Systems, vol. 26, no. 5, 2015, pp. 535–544. https://doi.org/10.1007/s40313-015-0203-5
A. Sapena-Bañó, M. Pineda-Sanchez, R. Puche-Panadero, J. Martinez-Roman and D. Matić, “Fault Diagnosis of Rotating Electrical Machines in Transient Regime Using a Single Stator Current’s FFT”, IEEE Transactions on Instrumentation and Measurement, vol. 64, no. 11, 2015, pp. 3137–3146. https://doi.org/10.1109/TIM.2015.2444240
A. L. Vitor, P. R. Scalassara, W. Endo and A. Goedtel, “Induction motor fault diagnosis using wavelets and coordinate transformations”, 12th IEEE International Conference on Industry Applications (INDUSCON), 2016. https://doi.org/10.1109/INDUSCON.2016.7874502
G. Jagadan, L. Gopi, S. George and J. Jacob, “Modeling and detection of inter-turn fault in induction motors using wavelet entropy estimation,” International Review of Electrical Engineering, vol. 7, no. 1, 2012, pp. 3342-3352.
L. Eren, M. Aşkar and M. J. Devaney, “Motor current signature analysis via four-channel FIR filter banks”, Measurement, vol. 89, 2016, pp. 322-327. https://doi.org/10.1016/j.measurement.2016.04.025
W. Abitha Memala and V. Rajini, “Single phasing fault identification using wavelet analysis”, International Journal of Engineering and Technology, vol. 6, no. 6, 2015, pp. 2712-2721.
F. Abid, S. Zgarni and A. Braham, “Distinct Bearing Faults Detection in Induction Motor by a Hybrid Optimized SWPT and aiNet-DAG SVM”, IEEE Transactions on Energy Conversion, vol. 33, no. 4, 2018, pp. 1–8. https://doi.org/10.1109/TEC.2018.2839083
W. Abitha Memala and V. Rajini, “Wavelet coefficients and statistical parameters in fault diagnosis”, International Journal of Applied Engineering Research, vol. 10, no. 3, 2015, pp. 7837-7842.
T. A. Garcia-Calva, D. Morinigo-Sotelo and R. Romero-Troncoso, “Non-Uniform Time Resampling for Diagnosing Broken Rotor Bars in Inverter-Fed Induction Motors”, IEEE Transactions on Industrial Electronics, vol. 64, no. 3, 2017, pp. 2306–2315. https://doi.org/10.1109/TIE.2016.2619318
R. J. Romero-Troncoso, A. Garcia-Perez, D. Morinigo-Sotelo, O. Duque-Perez, R. A. Osornio-Rios and M. A. Ibarra-Manzano, “Rotor unbalance and broken rotor bar detection in inverter-fed induction motors at start-up and steady-state regimes by high-resolution spectral analysis”, Electric Power Systems Research, vol. 133, 2016, pp. 142-148. https://doi.org/10.1016/j.epsr.2015.12.009
A. Naha, A. K. Samanta, A. Routray and A. K. Deb, “A method for detecting half-broken rotor bar in lightly loaded induction motors using current”, IEEE Transactions on Instrumentation and Measurement, vol. 65, no. 7, 2016, pp. 1614-1625. https://doi.org/10.1109/TIM.2016.2540941
R. Kechida, A. Menacer and H. Talhaoui, “Approach signal for rotor fault detection in induction motors”, Journal of Failure Analysis and Prevention, vol. 13, no. 3, 2013, pp. 346-352. https://doi.org/10.1007/s11668-013-9681-6
C. Rodriguez-Donate, R. J. Romero-Troncoso, A. Garcia-Perez and D. A. Razo-Montes, “FPGA based embedded system for induction motor failure monitoring at the start-up transient vibrations with wavelets”, International Symposium on Industrial Embedded Systems, 2008, pp. 208–214. https://doi.org/10.1109/SIES.2008.4577701
S. K. Ahamed, S. Karmakar, M. Mitra and S. Sengupta, “Novel diagnosis technique of mass unbalance in rotor of induction motor by the analysis of motor starting current at no load through wavelet transform”, International Conference on Electrical & Computer Engineering (ICECE), 2010, pp. 474–477. https://doi.org/10.1109/ICELCE.2010.5700732
S. R. Kapoor, A. Vashishtha and Y. S. Jethoo, “Performance analysis of wavelet based techniques for electrical faults signature extraction for squirrel cage induction motor”, International Conference on Signal Propagation and Computer Technology (ICSPCT), 2014, pp. 71–76. https://doi.org/10.1109/ICSPCT.2014.6884933
H. Keskes and A. Braham, “Recursive Undecimated Wavelet Packet Transform and DAG SVM for Induction Motor Diagnosis”, IEEE Transactions on Industrial Informatics, vol. 11, no. 5, 2015, pp. 1059-1066. https://doi.org/10.1109/TII.2015.2462315
F. J. Villalobos-Piña and R. Álvarez-Salas, “Algoritmo robusto para el diagnóstico de fallas eléctricas en el motor de inducción trifásico basado en herramientas espectrales y ondeletas”, Revista Iberoamericana de Automática e Informática Industrial RIAI, vol. 12, no. 3, 2015, pp. 292-303. https://doi.org/10.1016/j.riai.2015.04.003
R. Miceli, Y. Gritli, A. Di Tommaso, F. Filippetti and C. Rossi, “Vibration signature analysis for monitoring rotor broken bar in double squirrel cage induction motors based on wavelet analysis”, The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, vol. 33, no. 5, 2014, pp. 1625-1641. https://doi.org/10.1108/COMPEL-09-2013-0304
S. A. Taher, M. Malekpour and M. Farshadnia, “Diagnosis of broken rotor bars in induction motors based on harmonic analysis of fault components using modified adaptive notch filter and discrete wavelet transform”, Simulation Modelling Practice and Theory, vol. 44, 2014, pp. 26-41. https://doi.org/10.1016/j.simpat.2014.02.006
H. Kim, S. B. Lee, S. Park, S. H. Kia and G. A. Capolino, “Reliable Detection of Rotor Faults under the Influence of Low-Frequency Load Torque Oscillations for Applications with Speed Reduction Couplings”, IEEE Transactions on Industry Applications, vol. 52, no. 2, 2016, pp. 1460-1468. https://doi.org/10.1109/TIA.2015.2508423
K. N. Gyftakis, S. B. Lee, J. Kappatou and J. A. Antonino-Daviu, “Identification of the broken bar fault in induction motors with rotor air ducts through the torque spectrum”, International Conference on Electrical Machines (ICEM), 2014, pp. 1614–1620. https://doi.org/10.1109/ICELMACH.2014.6960398
K. M. Siddiqui, K. Sahay and V. K. Giri, “Early; diagnosis of stator inter-turn fault in inverter driven induction motor by wavelet transform”, IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), 2016, pp. 1–6. https://doi.org/10.1109/ICPEICES.2016.7853647
M. Zajac and M. Sulowicz, “The detection of coil shorting in induction motors by means of wavelet analysis”, Technical Transactions, no. 2, 2016, pp. 135-150. http://doi.org/10.4467/2353737XCT.16.253.6052
T. Kato, K. Inoue and K. Yoshida, “Diagnosis of stator-winding-turn faults of induction motor by direct detection of negative sequence currents”, Electrical Engineering in Japan, vol. 186, no. 3, 2013. https://doi.org/10.1002/eej.22350
K. M. Siddiqui, K. Sahay and V. K. Giri, “Early, diagnosis of airgap eccentricity fault in the inverter driven induction motor drives by wavelet transform”, Journal of Electrical Engineering, vol. 16, no. 2, 2016.
K. Yahia, A. J. M. Cardoso, A. Ghoggal and S. E. Zouzou, “Induction motors airgap-eccentricity detection through the discrete wavelet transform of the apparent power signal under non-stationary operating conditions”, ISA Transactions, vol. 53, no. 2, 2014, pp. 603-311. https://doi.org/10.1016/j.isatra.2013.12.002
F. J. Villalobos-Piña, R. Alvarez-Salas, E. Cabal-Yepez and A. Garcia-Perez, “Induction motor model validation using fast fourier transform and wavelet tools”, 9th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives (SDEMPED), 2013, pp. 192–199. https://doi.org/10.1109/DEMPED.2013.6645716
P. Ewert and A. Dorosławska, “Zastosowanie analizy falkowej do wykrywania uszkodzeń łożysk tocznych”, Przegląd Elektrotechniczny, vol. 93, no. 1, 2017. https://doi.org/10.15199/48.2017.01.72
K. C. Deekshit, M. Gopala and R. Srinivasa, “Bearing Fault Diagnosis in 3 phase Induction Machine Using Current Spectral Subtraction with Different Wavelet Transform Techniques”, Journal Electrical Systems, vol. 13, no. 1, 2017, pp. 143-159.
R. K. Patel and V. K. Giri, “Condition monitoring of induction motor bearing based on bearing damage index”, Archives of Electrical Engineering, vol. 66, no. 1, 2017, pp. 105–119. https://doi.org/10.1515/aee-2017-0008
R. K. Pate and V. K. Giri, “Induction motor bearing fault diagnosis using cascaded EMD and DWT techniques”, International Journal of Applied Engineering Research, vol. 10, no. 11, 2015, pp. 28317-28330.
A. H. Boudinar, N. Benouzza, A. Bendiabdellah and M. E. Khodja, “Induction motor bearing fault analysis using a root-MUSIC method”, IEEE Transactions on Industry Applications, vol. 52, no. 5, 2016, pp. 3851-3860. https://doi.org/10.1109/TIA.2016.2581143
R. Kianinezhad, P. Mirjani and S. G. Seifossadat, “Motor ballbearing outer race fault detection using wavelet packet decomposition, an experimental and simulation study”, International Review of Electrical Engineering, vol. 7, no. 6, 2012, pp. 6116-6122.
B. Bessam, A. Menacer, M. Boumehraz and H. Cherif, “A Novel Method for Induction Motors Stator Inter- Turn Short Circuit Fault Diagnosis based on Wavelet Energy and Neural Network”, IEEE 10th International Symposium on Diagnostics for Electrical Machines, Power Electronics and Drives (SDEMPED), 2015, pp. 143–149. https://doi.org/10.1109/DEMPED.2015.7303682
C. Wu, T. Chen, R. Jiang, L. Ning and Z. Jiang, “ANN based multi-classification using various signal processing techniques for bearing fault diagnosis”, International Journal. Control Automation, vol. 8, no. 7, 2015.
W. He, Y. Zi, B. Chen, F. Wu and Z. He, “Automatic fault feature extraction of mechanical anomaly on induction motor bearing using ensemble super-wavelet transform”, Mechanical Systems and Signal Processing, vol. 55, 2015, pp. 457–480. https://doi.org/10.1016/j.ymssp.2014.09.007
V. R. Jadhav and A. S. Patil, “Classification of voltage sags at Induction Motor by Artificial Neural Network”, International Conference on Energy Systems and Applications, 2015, pp. 173–177. https://doi.org/10.1109/ICESA.2015.7503334
N. R. Devi, D. V. S. S. Siva Sarma and P. V. Ramana Rao, “Diagnosis and classification of stator winding insulation faults on a three-phase induction motor using wavelet and MNN”, IEEE Transactions on Dielectrics and Electrical Insulation, vol. 23, no. 5, 2016, pp. 2543-2555. https://doi.org/10.1109/TDEI.2016.7736811
D. A. Asfani, Syafaruddin, M. H. Purnomo, and T. Hlyama, “Neural network based real time detection of temporary short circuit fault on induction motor winding through wavelet transformation”, International journal of innovative computing, information & control: IJICIC, vol. 10, no. 6, 2014.
P. Konar, J. Sil and P. Chattopadhyay, “Knowledge extraction using data mining for multi-class fault diagnosis of induction motor”, Neurocomputing, vol. 166, 2015, pp. 14-25. https://doi.org/10.1016/j.neucom.2015.04.040
P. Konar and P. Chattopadhyay, “Multi-class fault diagnosis of induction motor using Hilbert and Wavelet Transform”, Applied Soft Computing, vol. 30, 2015, pp. 341-352. https://doi.org/10.1016/j.asoc.2014.11.062
E. Cabal-Yepez, R. J. Romero-Troncoso, A. Garcia-Perez and R. A. Osornio-Rios, “Single-parameter fault identification through information entropy analysis at the startup-transient current in induction motors”, Electric Power Systems Research, vol. 89, 2012, pp. 64-69. https://doi.org/10.1016/j.epsr.2012.02.016
L. Souad, B. Azzedine, C. B. Eddine, B. Boualem, M. Samir and M. Youcef, “Induction machine rotor and stator faults detection by applying the DTW and N-F network”, IEEE International Conference on Industrial Technology (ICIT), 2018, pp. 431–436. https://doi.org/10.1109/ICIT.2018.8352216
W. Kai, B. Ming, C. Lin, Y. Ting and S. Huayu, “The method of fault detection and diagnosis for induction motors based on wavelets and independent component analysis”, International Journal of Digital Content Technology and its Applications, vol. 5, no. 9, 2011, pp. 405-410. https://doi.org/10.4156/jdcta.vol5.issue9.45
S. Jaya and R. Vinodha, “Fault diagnose of induction motor using novel least square fuzzy total margin support vector machine”, IIOAB Journal, vol. 7, no. 11, 2016.
Q. Liu, F. Chen and Z. Zhou, “Fault Diagnosis of Rolling Bearing Based on Wavelet Package Transform and Ensemble Empirical Mode Decomposition”, Advances in Mechanical Engineering, vol. 5, 2013. https://doi.org/10.1155%2F2013%2F792584
M. G. Macri and M. Benedetti, “Análisis multirresolución del motor trifásico de inducción sometido a huecos de tensión”, Ingeniare. Revista chilena de ingeniería, vol. 20, no. 1, 2012, pp. 66–78. http://dx.doi.org/10.4067/S0718-33052012000100007
E. H. Bayoumi, “Multi-resolution analysis wavelet PI stator resistance estimator for direct torque induction motor drive”, WSEAS Transactions on Circuits and Systems, vol. 12, no. 7, 2013, pp. 211-220.
R. A. Keswani, H. M. Suryawanshi and M. S. Ballal, “Multi-resolution analysis for converter switch faults identification”, IET Power Electrononics, vol. 8, no. 5, 2015. https://doi.org/10.1049/iet-pel.2014.0450
H. B. A. Sethom and M. A. Ghedamsi, “Multiresolution Analysis based effective diagnosis of induction motors”, American Journal of Applied Sciences, vol. 9, no. 5, 2012, pp. 624-632. https://doi.org/10.3844/ajassp.2012.624.632
N. Khandelwal, P. Pareek and S. R. Kapoor, “Start-up Transient Current Analysis for Squirrel Cage Induction Motor”, IEEE 1st International Conference on Power Electronics, Intelligent Control and Energy Systems (ICPEICES), 2016. https://doi.org/10.1109/ICPEICES.2016.7853261
K. Salloum Gaeid and H. Wooi Ping, “Wavelet fault diagnosis and tolerant of induction motor: A review”, International journal of physical sciences, vol. 6, no. 3, 2011, pp. 358–376.
H. Watanabe and N. Kasa, “A torque ripples compensating technique based on disturbance observer with wavelet transform for sensorless induction motor drives”, IECON ’98. Proceedings of the 24th Annual Conference of the IEEE, 1998, pp. 580–585. https://doi.org/10.1109/IECON.1998.724157
K. Shanlin and K. Yuzhe, “Optimization Design of Wavelet Network for Estimation of Flux and Torque in Induction Motor Control System”, 8th International Conference on Electronic Measurement and Instruments, 2007, pp. 3–433. https://doi.org/10.1109/ICEMI.2007.4350947
C. B. Eddine, B. Azzeddine and B. Mokhtar, “Detection of a two-level inverter open-circuit fault using the discrete wavelet transforms technique”, IEEE International Conference on Industrial Technology (ICIT), 2018, pp. 370–376. https://doi.org/10.1109/ICIT.2018.8352206
S. Jeevanand and A. T. Mathew, “Condition Monitoring of Induction Motors Using Wavelet Based Analysis of Vibration Signals”, Second International Conference on Future Generation Communication and Networking Symposia, 2008, pp. 75–80. https://doi.org/10.1109/FGCNS.2008.22
H. Talhaoui, A. Menacer, A. Kessal and R. Kechida, “Fast Fourier and discrete wavelet transforms applied to sensorless vector control induction motor for rotor bar faults diagnosis”, ISA Transactions, vol. 53, no. 5, 2014, pp. 1639–1649. https://doi.org/10.1016/j.isatra.2014.06.003
O. A. S. Youssef, “Fault classification based on wavelet transforms”, 2001 IEEE/PES Transmission and Distribution Conference and Exposition. Developing New Perspectives, 2001, pp. 531–536. https://doi.org/10.1109/TDC.2001.971290
E. Cabal-Yepez, A. G. Garcia-Ramirez, R. J. Romero-Troncoso, A. Garcia-Perez, and R. A. Osornio-Rios, “Reconfigurable monitoring system for time-frequency analysis on industrial equipment through STFT and DWT”, IEEE Transactions on Industrial Informatics, vol. 9, no. 2, 2013, pp. 760–771. https://doi.org/10.1109/TII.2012.2221131
S. Padmanaban et al., “Wavelet-fuzzy speed indirect field oriented controller for three-phase AC motor drive - Investigation and implementation”, Engineering Science and Technology, an International Journal, vol. 19, no. 3, 2016, pp. 1099–1107. https://doi.org/10.1016/j.jestch.2015.11.007
P. Sanjeevikumar et al., “Wavelet Transform with Fuzzy Tuning Based Indirect Field Oriented Speed Control of Three- Phase Induction Motor Drive”, International Conference on Electrical Drives and Power Electronics (EDPE), 2015, pp. 21–23. https://doi.org/10.1109/EDPE.2015.7325279
R. Roshanfekr and A. Jalilian, “Wavelet-based index to discriminate between minor inter-turn short-circuit and resistive asymmetrical faults in stator windings of doubly fed induction generators: a simulation study”, IET Generation, Transmission & Distribution, vol. 10, no. 2, 2016, pp. 374–381. https://doi.org/10.1049/iet-gtd.2015.0545
S. Sridhar, K. U. Rao and S. Jade, “Detection and classification of PQ disturbances in the supply to induction motor using wavelet transform and feedforward neural network”, IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT), 2015, pp. 1–5. https://doi.org/10.1109/ICECCT.2015.7225930
M. A. Khan and M. A. Rahman, “Discrete Wavelet Transform Based Detection of Disturbances in Induction Motors”, International Conference on Electrical and Computer Engineering, 2006, pp. 462–465. https://doi.org/10.1109/ICECE.2006.355669
S. Santoso, E. J. Powers, W. M. Grady and P. Hofmann, “Power quality assessment via wavelet transform analysis”, IEEE Transactions on Power Delivery, vol. 11, no. 2, 1996, pp. 924–930. https://doi.org/10.1109/61.489353
A. M. Gaouda, M. M. A. Salama, M. R. Sultan and A. Y. Chikhani, “Power quality detection and classification using wavelet-multiresolution signal decomposition,” IEEE Transactions on Power Delivery, vol. 14, no. 4, 1999, pp. 1469–1476. https://doi.org/10.1109/61.796242
H. Ismail, N. Hamzah, S. Shahbudin and Z. Zakaria, “Comparative analysis of input parameters using wavelet transform for voltage sag disturbance classification”, IEEE International Conference on Software Engineering and Service Sciences, 2010, pp. 5–8. https://doi.org/10.1109/ICSESS.2010.5552350
X. Zhang and Y. Xu, “Analysis of Voltage Sag Source Location Based on Wavelet-Multiresolution Method”, Asia-Pacific Power and Energy Engineering Conference, 2010, pp. 1–4. https://doi.org/10.1109/APPEEC.2010.5448152
S. A. Saleh, M. A. Khan and M. A. Rahman, “Application of a wavelet-based MRA for diagnosing disturbances in a three-phase induction motor”, 5th IEEE International Symposium on Diagnostics for Electric Machines, Power Electronics and Drives, 2005, pp. 1–6. https://doi.org/10.1109/DEMPED.2005.4662523
D. Chanda, N. K. Kishore and A. K. Sinha, “Application of wavelet multiresolution analysis for identification and classification of faults on transmission lines”, Electric Power Systems Research, vol. 73, no. 3, 2005, pp. 323–333. https://doi.org/10.1016/j.epsr.2004.07.006
E. Gómez, G. Aponte and D. Silva, “Selección de una wavelet madre para el análisis frecuencial de señales eléctricas transitorias”, Ingeniare, vol. 21, no. 2, 2013, pp. 262–270. https://doi.org/10.4067/S0718-33052013000200009
H.-S. Chuang, Y.-C. Chuang and C.-H. Yang, “Non-intrusive efficiency estimation of induction motor based on on-site measurements”, ICIC Express Letter Part B: Applications, vol. 6, no. 12, 2015, pp. 3173-3181.
A. Hovanessian and M.-A. Norouzi, “Islanding detection using wavelet transform and rate of change of frequency relay method in presence of different distributed generation technologies”, IEEJ Transactions on Electrical and Electronic Engineering, vol. 11, 2016. https://doi.org/10.1002/tee.22238
J. F. Hernandez-Perez, D. Vela-Arvizo, J. M. Rodriguez-Lelis, J. L. Orta-Acuna, D. Tolosa-Mata and M. Vargas-Trevino, “A Morlet Wavelet Signal Analysis with a Daubechies Filter for Power Quality Disturbances”, Electronics, Robotics and Automotive Mechanics Conference (CERMA 2007), 2007, pp. 675–680. https://doi.org/10.1109/CERMA.2007.4367765
J. Pons-Llinares, J. A. Antonino-Daviu, M. Riera-Guasp, S. B. Lee, T.-J. Kang and C. Yang, “Advanced induction motor rotor fault diagnosis via continuous and discrete time-frequency tools”, IEEE Transactions on Industrial Electronics, vol. 62, no. 3, 2015, pp. 1791-1802. https://doi.org/10.1109/TIE.2014.2355816
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2018 Visión electrónica
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
atribución- no comercial 4.0 International