DOI:

https://doi.org/10.14483/22484728.18416

Publicado:

2019-03-13

Número:

Vol. 2 Núm. 1 (2019): Edición especial

Sección:

Visión de Caso

Geolocation system and vehicular analysis for motorcyclists

Sistema de geolocalización y análisis vehicular para motociclistas

Autores/as

Palabras clave:

Coordenadas Geográficas, Android, Sensores, Motocicleta, Servidor, GPS (es).

Palabras clave:

Geographical coordinates, Android, Sensors, Motorcycle, Server, GPS (en).

Resumen (en)

Currently there are a number of applications functioning through internet connections aimed at assisting motorcyclists. However, most of these applications wither do not function or require the route maps to be downloaded prior to the trip. This paper proposes a vehicular analysis system where the motorcyclists have access to an application developed for Android devices, without relying on an internet connection. This will done either through data of the routes stored on the mobile device or through data hosted on a server through the implementation of a web service when there is a connection. Additional, variables are tracked and plotted, such as instant geographical position, percentage of necessary fuel, and speed, obtained through the design and implementation of an electronic circuit that acquires the signals of the motorcycle sensors and submit such information via Bluetooth to the mobile device. From the tests carried out it is observed that the system works efficiently with an absolute error up to 2 meters from the destination point. However, the routes from actual location of the motorcyclist to the intermediate position, the precision is even better with an error possibility of only centimeters. In general, for some distance, the system presents a standard deviation of 15,19 meters. The storage of the data and the user orientation are in real time, and the system can be implemented on any kind of vehicle.

Resumen (es)

Actualmente existen aplicaciones dedicadas a la orientación de motociclistas que funcionan soportadas en una conexión a internet, pero cuando se carece de ella la mayoría no funcionan y otras permiten el funcionamiento solo si anteriormente se descargaron los mapas de los trayectos a realizar. Por lo anterior, este artículo propone un sistema de análisis vehicular en donde los motociclistas tienen acceso a una aplicación desarrollada para dispositivos con sistema operativo Android que les mostrará una metodología de orientación sin depender exclusivamente de una conexión a internet; esta orientación –en cambio- se realiza con base en los datos de recorridos almacenados en el dispositivo móvil, o en los datos alojados en un servidor mediante la implementación de un servicio web cuando hay conexión. Adicionalmente, se realiza seguimiento y graficación de las variables: posición geográfica instantánea, porcentaje de nivel de gasolina, y velocidad, obtenidas mediante el diseño e implementación de un circuito electrónico encargado de capturar las señales de los sensores de la motocicleta y enviar dicha información vía Bluetooth al dispositivo móvil. De las pruebas realizadas se observa que el sistema funciona eficientemente con un error absoluto menor a 2 metros hasta el punto de destino; sin embargo, para el recorrido desde el punto actual del usuario hasta uno intermedio la precisión es del orden de centímetros.

Referencias

C. A. Díaz Celis, C. A. Romero Molano, "Robot aplicado a la medición de áreas usando gps". Visión Electrónica, vol. 9, no. 2, 2016, pp. 206-214. https://doi.org/10.14483/22484728.11029

J. D. Nieto, L. F. Santos, L. J. Vargas, S. A. Salinas. "Geolocalización para pacientes con alzhéimer: una propuesta". Visión Electrónica, vol. 11, no. 1, 2017, pp. 40-44, https://doi.org/10.14483/22484728.12791

A. Escobar Díaz, J. Calderón Acero, I. Parra Garzón, "Prototipo Teleoperado: Una alternativa en sistemas de búsqueda de personas". Visión Electrónica, vol. 2, no. 2, 2011, pp. 78-85.

U. Iqbal, T. B. Karamat, A. F. Okou, A. Noureldin, (2009). "Experimental Results on an Integrated GPS and Multisensor Systemfor Land Vehicle Positioning". International Journal of Navigation & Observation, 2009, pp. 1-18. https://doi.org/10.1155/2009/765010

Aristasur, "Cómo funciona el sistema de posicionamiento GPS", https://www.aristasur.com/contenido/como-funciona-el-sistema-de-posicionamiento-gps

J. Peñafiel, J. Zayas, "Colegio oficial de ingenieros técnicos en topografía delegación territorial de madrid-castilla-la mancha, "fundamentos del sistema gps y aplicaciones en la topografía" http://www.rutasnavarra.com/gps/Teoria/GPSavanzado.pdf

E. Huerta, A. Mangiaterra, G. Noguera, "GPS: posicionamiento satelital"; - 1a. ed. - Rosario: UNR Editora - Universidad Nacional de Rosario, PDF https://www.fceia.unr.edu.ar/gps/GGSR/libro_gps.pdf

A. Shukla, A. Jain, (2018). "GPS-Based Tracking System for Vehicles Using Google Maps". IUP Journal of Electrical & Electronics Engineering, vol. 11, no. 4, 2018, pp. 57-64.

M. Ramírez, "Google Maps vs Waze, comparativa a fondo: ¿qué app tiene las mejores opciones de navegación?", https://www.xatakandroid.com/aplicaciones-android/google-maps-vs-waze-comparativa-a-fondo-que-app-tiene-las-mejores-opciones-de-navegacion

R. Paszniuk, "Acceso a Web Service SOAP en Android", https://www.programacion.com.py/mobiles/android/acceso-a-web-service-soap-en-android

J. Wang, X. Rui, X. Song, X. Tan, C. Wang, V. Raghavan, "A novel approach for generating routable road maps from vehicle GPS traces". International Journal of Geographical Information Science, vol. 29, no. 1, 2015, pp. 69-91. https://doi.org/10.1080/13658816.2014.944527

S. Xianfeng, V. Raghavan, D. Yoshida, "Matching of vehicle GPS traces with urban road networks. Current Science (00113891)", vol. 98, no. 12, 2010, pp. 1592-1598.

H. Songlai, W. Jinling "Land Vehicle Navigation with the Integration of GPS and Reduced INS: Performance Improvement with Velocity Aiding". Journal of Navigation, vol. 63, no. 1, 2010, pp. 153-166. https://doi.org/10.1017/S0373463309990282

J. Xie and J. Zhong, "Design and Implementation of GPS Vehicle Monitoring Information System," 2009 International Conference on Information Engineering and Computer Science, Wuhan, 2009, pp. 1-4. https://doi.org/10.1109/ICIECS.2009.5363796

K. Berntorp, "Joint Wheel-Slip and Vehicle-Motion Estimation Based on Inertial, GPS, and Wheel-Speed Sensors". IEEE Transactions on Control Systems Technology, vol. 24, no. 3, 2016, pp. 1020-1027. https://doi.org/10.1109/TCST.2015.2470636

H. Tan, (2010). "Design and Implementation of Vehicle Monitoring System Based on GSM/GIS/GPS," 2010 Second International Conference on Information Technology and Computer Science, Kiev, 2010, pp. 413-416. https://doi.org/10.1109/ITCS.2010.107

X. L. Wei Chen, S. Xiang, Bin Li, Xianghui Song, X. Qimin. (2015). "A novel fusion methodology to bridge GPS outages for land vehicle positioning". Measurement Science & Technology, vol. 26, no. 7, 2015. https://doi.org/10.1088/0957-0233/26/7/075001

Y. Zein, M. Darwiche, O. Mokhiamar, "GPS tracking system for autonomous vehicles". Alexandria Engineering Journal, vol. 57, no. 4, 2018, pp. 3127-3137. https://doi.org/10.1016/j.aej.2017.12.002

AutoDaewooSpark, "Medidor de gasolina", https://www.autodaewoospark.com/medidor-de-gasolina.php

A. Islam, U. Iqbal, J. M. P. Langlois, A. Noureldin, "Implementation methodology of embedded land vehicle positioning using an integrated GPS and multi sensor system". Integrated Computer-Aided Engineering, vol. 17, no. 1, 2010, pp. 69-83. https://doi.org/10.3233/ICA-2010-0330

K. Jo, K. Chu, J. Kim, M. Sunwoo, "Distributed vehicle state estimation system using information fusion of GPS and in-vehicle sensors for vehicle localization," 2011 14th International IEEE Conference on Intelligent Transportation Systems (ITSC), Washington, DC, 2011, pp. 2009-2014. https://doi.org/10.1109/ITSC.2011.6083010

P. Turmero; "Dispositivos electrónicos Caterpillar" https://www.monografias.com/trabajos104/dispositivos-electronicos-caterpillar/dispositivos-electronicos-caterpillar.shtml

M. Olmo; R. Nave, "Estudio del Seguidor Emisor", http://hyperphysics.phy-astr.gsu.edu/hbasees/Electronic/npncc.html

T. Tran, T. Nguyen, Hien, Vo Thanh Vinh, "Measuring Similarity between Vehicle Speed Records Using Dynamic Time Warping", Knowledge and Systems Engineering (KSE) 2015 Seventh International Conference on, 2015, pp. 168-173.

M. B. Vukajlović, S. Tadić, D. M. Dramićanin, "The practical design of in-vehicle telematics device with GPS and MEMS accelerometers," 2011 19thTelecommunications Forum (TELFOR) Proceedings of Papers, Belgrade, 2011, pp. 908-911. https://doi.org/10.1109/TELFOR.2011.6143692

L. Baghli, K. Benmansour, M. Djemai, "Development of a data acquisition and tracking system for vehicles," 3rd International Symposium on Environmental Friendly Energies and Applications (EFEA), St. Ouen, 2014, pp. 1-6. https://doi.org/10.1109/EFEA.2014.7059936

T. Jeyaprakash, R. Mukesh, "A Tactical Information Management System for Unmanned Vehicles Using Vehicular Adhoc Networks," 2013 4th International Conference on Intelligent Systems, Modelling and Simulation, Bangkok, pp. 472-474. https://doi.org/10.1109/ISMS.2013.69

K. T. Leung, J. F. Whidborne, D. Purdy, P. Barber, (2011). "Road vehicle state estimation using low-cost GPS/INS". Mechanical Systems & Signal Processing, vol. 25, no. 6, 2011, pp. 1988-2004. https://doi.org/10.1016/j.ymssp.2010.08.003

J. I. Hernandez, K. Chen-Yuan. "Steering Control of Automated Vehicles Using Absolute Positioning GPS and Magnetic Markers". IEEE Transactions on Vehicular Technology, vol. 52, no. 1, 2003. https://doi.org/10.1109/TVT.2002.807224

J. Fan, C. Fu, K. Stewart, L. Zhang, "Using big GPS trajectory data analytics for vehicle miles traveled estimation". Transportation Research: Part C, 2019, pp. 298-307. https://doi.org/10.1016/j.trc.2019.04.019

T. Chao, X. Jufang, Z. Yiyi, H. Dong, L. Jiao, "A Smart Exhibition System of Power Measurement Vehicle based on the GIS and GPS Techniques". International Journal of Online Engineering, vol. 10, no. 1, 2014, pp. 41-45. https://doi.org/10.3991/ijoe.v10i1.3364

E. Žunić, H. Hindija, A. Beširević, K. Hodžić, S. Delalić, "Improving Performance of Vehicle Routing Algorithms using GPS Data," 2018, 14th Symposium on Neural Networks and Applications (NEUREL), Belgrade, pp. 1-4. https://doi.org/10.1109/NEUREL.2018.8586982

Z. Sun, X. Ban, "Vehicle classification using GPS data. Transportation" Research: Part C, 37, 2013, pp. 102-117. https://doi.org/10.1016/j.trc.2013.09.015

M. Rothblatt, "The first GPS satellite radio optimized for automatic vehicle location," IEEE PLANS 92 Position Location and Navigation Symposium Record, Monterey, CA, USA, 1992, pp. 524-527.

H. Hu, L. Fang, "Design and Implementation of Vehicle Monitoring System Based on GPS/GSM/GIS," 2009 Third International Symposium on Intelligent Information Technology Application, Shanghai, pp. 278-281. https://doi.org/10.1109/IITA.2009.411

Zeokat, "Ngrok, crea túneles seguros a tu servidor local", https://www.vozidea.com/ngrok-crea-tuneles-seguros-a-tu-servidor-local

S. Ma, F. Wen, Z. Wang, "An Efficient GPS-Free Vehicle Localization Algorithm Using Single Roadside Unit and Receiver," 2018 International Conference on Networking and Network Applications (NaNA), Xi'an, China, pp. 310-313. https://doi.org/10.1109/NANA.2018.8648764

T. Hunter, W. Kosmalski, P. Truong, "Vehicle navigation using differential GPS," IEEE Symposium on Position Location and Navigation. A Decade of Excellence in the Navigation Sciences, Las Vegas, NV, USA, 1990, pp. 392-398.

H. Baomin, Q. Guoqing, "A New Algorithm for GPS-Based Vehicle Navigation System," 2006 6th International Conference on ITS Telecommunications, Chengdu, pp. 1208-1211. https://doi.org/10.1109/ITST.2006.288843

E. Pop, A. Botu, "Programmable GPS Receiver for Automatic Vehicle Location," 2006 IEEE International Conference on Automation, Quality and Testing, Robotics, Cluj-Napoca, pp. 387-390. https://doi.org/10.1109/AQTR.2006.254566

W. Pieniążek, S. Wolak, P. Nogowczyk, "Measurement of selected parameters of special vehicle longitudinal and lateral dynamics with GPS systems," 2018 XI International Science-Technical Conference Automotive Safety, Casta, pp. 1-6. https://doi.org/10.1109/AUTOSAFE.2018.8373335

M. Bandyopadhyay, V. Singh, "GIS based processing of GPS trajectories for Link Speed Determination: Applied to Link Speed profiling of Fire Emergency Vehicles," Proceedings of 3rd International Conference on Reliability, Infocom Technologies and Optimization, Noida, 2014, pp. 1-5. https://doi.org/10.1109/ICRITO.2014.7014693

V. Kukshya, H. Krishnan, C. Kellum, "Performance Evaluation of a System for Estimating Relative Positions of Vehicles During GPS Outages," 2006 IEEE Intelligent Vehicles Symposium, Tokyo, pp. 394-399.

D. Walsh, S. Capaccio, D. Lowe, P. Daly, P. Shardlow, G. Johnston, "Real time differential GPS and GLONASS vehicle positioning in urban areas". Space Communications, vol. 14, no. 4, 1997.

D. Banasiak, "GPS vehicle location system". Roads & Bridges, vol. 35, no. 4, 1997.

J. Wang et al., "A weighted clustering algorithm for clarifying vehicle GPS traces," 2011 IEEE International Geoscience and Remote Sensing Symposium, Vancouver, BC, pp.2949-2952. https://doi.org/10.1109/IGARSS.2011.6049834

R. Paszniuk, "Acceso a Web Service SOAP en Android", https://www.programacion.com.py/mobiles/android/acceso-a-web-service-soap-en-android

A. Bohlooli, K. Jamshidi, "A GPS-free method for vehicle future movement directions prediction using SOM for VANET". Applied Intelligence, vol. 36, no. 3, 2012, pp. 685-697. https://doi.org/10.1007/s10489-011-0289-9

I. Sanaullah, M. Quddus, M. Enoch, (2016). "Developing travel time estimation methods using sparse GPS data". Journal of Intelligent Transportation Systems, vol. 20, no. 6, 2016, pp. 532-544. https://doi.org/10.1080/15472450.2016.1154764

R. J. Abelleyro, "Integrated voice/telemetry/GPS location mobile radio system for public transit; Dallas Area Rapid Transit, DART, Texas," 1992 IEEE International Conference on Selected Topics in Wireless Communications, Vancouver, BC, Canada, pp. 151-153.

O. Camino Costa; D. Jesus Tomas Girones, (2012). "Desarrollo de una aplicación de realidad aumentada sobre android para el apuntamiento de los nodos en el telescopio de neutrinos antares", Universidad Politécnica de Valencia, Gandia. https://riunet.upv.es/bitstream/handle/10251/18444/memoria.pdf?sequence=1

Nergiza, "¿Aumenta el consume de un coche con el tiempo?", https://nergiza.com/aumenta-el-consumo-de-un-coche-con-el-tiempo/

Cómo citar

APA

Garzón-Ramírez, D. S., Sanabria-Guio, M. S., y Cely-Fajardo, J. D. (2019). Geolocation system and vehicular analysis for motorcyclists. Visión electrónica, 2(1), 95–106. https://doi.org/10.14483/22484728.18416

ACM

[1]
Garzón-Ramírez, D.S. et al. 2019. Geolocation system and vehicular analysis for motorcyclists. Visión electrónica. 2, 1 (mar. 2019), 95–106. DOI:https://doi.org/10.14483/22484728.18416.

ACS

(1)
Garzón-Ramírez, D. S.; Sanabria-Guio, M. S.; Cely-Fajardo, J. D. Geolocation system and vehicular analysis for motorcyclists. Vis. Electron. 2019, 2, 95-106.

ABNT

GARZÓN-RAMÍREZ, David Steven; SANABRIA-GUIO, Michael Steve; CELY-FAJARDO, José David. Geolocation system and vehicular analysis for motorcyclists. Visión electrónica, [S. l.], v. 2, n. 1, p. 95–106, 2019. DOI: 10.14483/22484728.18416. Disponível em: https://revistas.udistrital.edu.co/index.php/visele/article/view/18416. Acesso em: 18 abr. 2024.

Chicago

Garzón-Ramírez, David Steven, Michael Steve Sanabria-Guio, y José David Cely-Fajardo. 2019. «Geolocation system and vehicular analysis for motorcyclists». Visión electrónica 2 (1):95-106. https://doi.org/10.14483/22484728.18416.

Harvard

Garzón-Ramírez, D. S., Sanabria-Guio, M. S. y Cely-Fajardo, J. D. (2019) «Geolocation system and vehicular analysis for motorcyclists», Visión electrónica, 2(1), pp. 95–106. doi: 10.14483/22484728.18416.

IEEE

[1]
D. S. Garzón-Ramírez, M. S. Sanabria-Guio, y J. D. Cely-Fajardo, «Geolocation system and vehicular analysis for motorcyclists», Vis. Electron., vol. 2, n.º 1, pp. 95–106, mar. 2019.

MLA

Garzón-Ramírez, David Steven, et al. «Geolocation system and vehicular analysis for motorcyclists». Visión electrónica, vol. 2, n.º 1, marzo de 2019, pp. 95-106, doi:10.14483/22484728.18416.

Turabian

Garzón-Ramírez, David Steven, Michael Steve Sanabria-Guio, y José David Cely-Fajardo. «Geolocation system and vehicular analysis for motorcyclists». Visión electrónica 2, no. 1 (marzo 13, 2019): 95–106. Accedido abril 18, 2024. https://revistas.udistrital.edu.co/index.php/visele/article/view/18416.

Vancouver

1.
Garzón-Ramírez DS, Sanabria-Guio MS, Cely-Fajardo JD. Geolocation system and vehicular analysis for motorcyclists. Vis. Electron. [Internet]. 13 de marzo de 2019 [citado 18 de abril de 2024];2(1):95-106. Disponible en: https://revistas.udistrital.edu.co/index.php/visele/article/view/18416

Descargar cita

Visitas

31

Dimensions


PlumX


Descargas

Los datos de descargas todavía no están disponibles.
Loading...