DOI:

https://doi.org/10.14483/22484728.18439

Publicado:

2019-12-06

Número:

Vol. 2 Núm. 2 (2019): Edición especial

Sección:

Visión Actual

Automation and control of greenhouse implemented technologies: a review

Automatización y control de tecnologías implementadas en invernaderos: una revisión

Autores/as

Palabras clave:

Automation, Control, Greenhouse, Modeling, Protected agriculture, Robot, Weather conditions (en).

Palabras clave:

Automatización, Control, Invernadero, Modelado, Agricultura protegida, Robot, Condiciones climáticas (es).

Resumen (en)

Protected agriculture is a way of producing food by creating a microclimate that allows protecting a crop from the risks inherent in free exposure; in this sense, its purpose is to guarantee the optimal and appropriate conditions of internal variables to generate reproduction, development and growth of plants with quality and commercial opportunity. In this way, the application of technologies to crops has extended considerably due to the need to optimize this productive alternative: in this respect, there are multiple scattered investigations based on particular designs of elements such as greenhouses. Therefore, this article shows a review on protected agriculture aimed at the automation of greenhouses in countries that have implemented emerging technologies in this field and the consequent control generated in the stages of the production cycle through sensors, actuators, specific covers or robots designed to perform tasks such as spraying or harvesting, among others. Key analysis elements are presented on the modeling of the phenomenon that underlies the implementations, so that systems with the necessary adaptation are achieved for any crop, taking into account its type, cost and location, defining a baseline on the technologies that make it functional and efficient.

Resumen (es)

La agricultura protegida es una manera de producir alimentos creando un microclima que permite proteger un cultivo de los riesgos propios de la libre exposición; en este sentido, tiene como finalidad garantizar las condiciones óptimas y apropiadas de variables internas para generar la reproducción, desarrollo y crecimiento de plantas con calidad y oportunidad comercial. De esta manera, la aplicación de tecnologías a cultivos se ha extendido considerablemente por la necesidad de optimizar esta alternativa productiva: al respecto se encuentran múltiples investigaciones dispersas basadas en diseños particulares de elementos como los invernaderos. Por lo anterior, el presente artículo muestra una revisión sobre agricultura protegida orientada a la automatización de invernaderos en los países que han realizado implementaciones de tecnologías emergentes en este campo y el consecuente control generado en las etapas del ciclo productivo a través de sensores, actuadores, cubiertas específicas o robots diseñados para realizar tareas tales como fumigación o cosechado, entre otras. Se presentan elementos de análisis clave sobre el modelamiento del fenómeno que subyace a las implementaciones, de manera que se logren sistemas con la adaptación necesaria para cualquier cultivo teniendo en cuenta su tipo, costo y ubicación, definiendo una línea de base sobre las tecnologías que lo hacen funcional y eficiente.

Referencias

N. Madden, “The Future of Farming, Part 1: Controlling the Environment”, 2013. [Online]. Available at: https://www.technewsworld.com/story/78646.html

R. Castañeda-Miranda, E. J. Ventura-Ramos, R. Peniche-Vera and G. Herrera-Ruiz, “Análisis y simulación del modelo físico de un invernadero bajo condiciones climáticas de la región central de México”, Agrociencia, vol. 41, no. 3, pp. 317-315, 2007.

A. Bastida, “Los Invernaderos en México”, Chapingo, México: Universidad Autónoma Chapingo, p. 123, 2008.

R. Moreno, D. Aguilar and G. Luévano, “Características de la agricultura protegida y su entorno en México”, Revista Mexicana de Agronegocios, vol. 29, pp. 763-774, 2011.

Y. Hashimoto, “The computarized greenhouse: automatic control application in plant production”, Academic Press, 1993.

P. A. Rincón, J. A. Silva and A. F. Torres, “Automatización de invernadero para producción agrícola con tecnología de punta a bajo costo”, Revista de Investigaciones Agroempresariales, vol. 3, pp. 9-23, 2017. https://doi.org/10.23850/25004468.1419

S. Hemming, J. Balendonck, J. Dieleman, F. Kempkes, G. Swinkels and H. Zwart, “Innovations in greenhouse systems - energy conservation by system design, sensors and decision support systems”, International Symposium on New Technologies and Management for Greenhouses - GreenSys, 2015. https://doi.org/10.17660/ActaHortic.2017.1170.1

G. Gat, S. Gan-Mor and A. Degani, “Stable and robust vehicle steering control using an overhead guide in greenhouse tasks”, Computers and Electronics in Agriculture, vol. 121, pp. 234-244, 2016. https://doi.org/10.1016/j.compag.2015.12.019

J. Wright, “Agbotic builds greenhouse to test precision watering and tilling robot”, 2015. [Online]. Available at: https://www.greenhousegrower.com/industry-news/agbotic-builds-greenhouse-to-test-precision-watering-and-tilling-robot/

SIC, “Tecnologías Relacionadas Con Invernaderos Para Flores”, 2014. [Online]. Available at: https://www.sic.gov.co/recursos_user/boletines_tecno/boletin_invernaderos_19jun.pdf

A. H. Alarcón-López, G. Arias-Vargas, C. J. Díaz-Ortiz and J. D. Sotto-Vergara, “Diseño de un sistema de control y automatización de temperatura, humedad del suelo y humedad relativa para optimizar el rendimiento de cultivos bajo cubierta en CORHUILA”, 4to Congreso Internacional AmITIC 2017, Aplicando nuevas tecnologías, 2017.

E. Rodríguez, “Efecto de la poda y densidad de población en el rendimiento y calidad de fruto de jitomate”, PhD. thesis, Universidad Autónoma Chapingo, México, 1996.

A. E. Arranz-Gimón, “Desarrollo de un sistema automatizado para un invernadero”, thesis, Universidad de Valladolid, España, 2012.

H. Challa, “Crop growth models for greenhouse climate control”, Wageningen: Pudoc, pp. 125-145, 1990.

J. Bakker, G. Bot, H. Challa and N. Van De Braak, “Greenhouse Climate Control: An Integrated Approach”, Wageningen Academic Publishers, p. 279, 1995.

R. Hernández Sampieri, C. Fernández Collado and P. Baptista Lucio, “Metodología de la investigación”, México: Mc Graw Hill, 2010.

L. Pratt and J. M. Ortega, “Agricultura protegida en México”, 2019. [Online]. Available at: https://publications.iadb.org/publications/spanish/document/Agricultura_protegida_en_M%C3%A9xico_Elaboraci%C3%B3n_de_la_metodolog%C3%ADa_para_el_primer_bono_verde_agr%C3%ADcola_certificado_es.pdf

S. Yang, J. Son, S. Lee, S. Cho, A. Ashtiani and J. Rhee, “Surplus thermal energy model of greenhouses and coefficient analysis for effective utilization”, Spanish journal of agricultural research, vol. 14, no. 1, 2016. http://dx.doi.org/10.5424/sjar/2016141-7517

E. I. García-Sánchez, J. Aguilar-Ávila and R. Bernal-Muñoz, “La agricultura protegida en Tlaxcala, Méjico: la adopción de innovaciones y el nivel de equipamiento como factores para su categorización”, Teuken Bidikay, vol. 2, no. 2, 2011.

L. Ortega-Martínez et al., “Nivel tecnológico de invernadero y riesgo para la salud de los jornaleros”, Nova Scientia, vol. 9, no. 18, 2017. https://doi.org/10.21640/ns.v9i18.730

M. Garcia-Martinez, S. Balasch, F. Alcon and M. Fernandez-Zamudio, “Characterization of technological levels in Mediterranean horticultural greenhouses”, Spanish Journal of Agricultural Research, vol. 8, no. 3, 2010. https://doi.org/10.5424/sjar/2010083-1247

R. Kim, I. Lee, U. Yeo and S. Lee, “Evaluation of various national greenhouse design standards for wind loading”, Biosystems Engineering, vol. 188, pp. 136-154, 2019. https://doi.org/10.1016/j.biosystemseng.2019.10.004

B. Rabbi, Z. Chen and S. Sethuvenkatraman, “Protected Cropping in Warm Climates: A Review of Humidity Control and Cooling Methods”, Energies, vol. 12, no. 14, 2019. https://doi.org/10.3390/en12142737

L. D. Ortega-Martínez, J. Ocampo-Mendoza, E. Sandoval-Castro, C. Martínez-Valenzuela, A Huerta-De La Peña, J. L. Jaramillo-Villanueva, “Characterization and functionality of greenhouses in Chignahuapan Puebla, México”, Revista Bio Ciencias, vol. 2, no. 4, 2014. http://dx.doi.org/10.15741/revbio.02.04.04

D. Moga, D. Petreus and N. Stroia, “A low cost architecture for remote control and monitoring of greenhouse fields”, 7th IEEE Conference on Industrial Electronics and Applications (ICIEA), 2012. https://doi.org/10.1109/ICIEA.2012.6361046

P. F. Martín-Gómez, J. E. Rangel-Díaz, J. O. Montoya-Gómez and J. L. Rubiano-Fernández, “Automation of greenhouse pesticide application: design and construction”, Revista Visión Electrónica, vol. 2, no. 1, Special edition, 2019.

E. Espí-Guzmán, T. Díaz-Serrano, A. Fontecha, J. C. Jiménez, J. López and A. Salmeron, “Los filmes plásticos en la producción agrícola”, Madrid: Mundiprensa, 2001.

E. Espí, “Materiales de cubierta para invernaderos”, Cuadernos de estudios agroalimentarios, no. 3, pp. 71-88, 2012.

J. C. Garnaud, “Plasticulture magazine: a milestone for a history of progress in plasticulture”, Plasticulture, vol. 1, no. 119, pp. 28-43, 2000.

N. Choab, A. Allouhi, A. Maakoul, T. Kousksou, S. Saadeddine and A. Jamil, “Review on greenhouse microclimate and application: Design parameters, thermal modeling and simulation, climate controlling technologies”, Solar Energy, vol. 191, pp. 109-137, 2019. https://doi.org/10.1016/j.solener.2019.08.042

E. A. Amaya, “Diseño e Implementación de Sistema de Riego Automatizado en un Invernadero de la Escuela Nacional de Agricultura, ENA”, Revista Tecnológica, vol. 7, no. 1, 2014.

A. Vadiee and V. Martin, “Energy management in horticultural applications through the closed greenhouse concept, state of the art”, Renewable and Sustainable Energy Reviews, vol. 16, no. 7, pp. 5087-5100, 2012. https://doi.org/10.1016/j.rser.2012.04.022

H. Esmaeli and R. Roshandel, “Optimal design for solar greenhouses based on climate conditions”, Renewable Energy, vol. 145, pp. 1255-1265, 2019. https://doi.org/10.1016/j.renene.2019.06.090

P. D. Bonilla-Nieto, J. S. Carrillo-Sanabria and J. R. Camargo-López, “Solar energy manager with PSOC5LP”, Revista Visión electrónica, vol. 13, no. 1, pp. 112-122, 2019. https://doi.org/10.14483/22484728.14426

M. Kacira, S. Sase and L. Okushima, “Optimization of vent configuration by evaluating greenhouse and plant canopy ventilation rates under wind-induced ventilation”, Transactions of the ASAE, vol. 47, no. 6, pp. 2059-2067, 2001. http://dx.doi.org/10.13031/2013.17803

G. A. Alzate-Acuña, R. Ferro-Escobar and O. Salcedo-Parra, “Smart irrigation: data capture process based on knowledge management”, Revista Visión electrónica, vol. 2, no. 1, Special edition, 2019.

A. D. Gordo-Ruiz, “Desarrollo e implementación de un Invernadero automatizado con cultivo hidropónico y aplicación móvil para el seguimiento de datos”, thesis, Universidad de Sevilla, España, 2017.

G. Pajares and J. M. Cruz, “Visión por computador: Imágenes digitales y aplicaciones”, México: Alfaomega Ra-Ma, 2002.

S. Russell and P. Norvig, “Artificial Intelligence: A modern approach”, Londres: Prentice Hall, 1995.

G. Belforte, R. Deboli, P. Gay, P. Piccarolo and D. Ricauda, “Robot Design and Testing for Greenhouse Applications”, Biosystems Engineering, vol. 95, no. 3, pp. 309-321, 2006. https://doi.org/10.1016/j.biosystemseng.2006.07.004

M. A. García, S. Gutiérrez, H. C. López, S. Rivera and A. C. Ruiz, “Estado del arte de la tecnología de robots aplicada a invernaderos”, Avances en Investigación Agropecuaria, vol. 11, no. 3, pp. 53-61, 2007.

E. Iddio, L. Wang, Y. Thomas, G. McMorrow and A. Denzer, “Energy efficient operation and modeling for greenhouses: A literature review”, Renewable and Sustainable Energy Reviews, vol. 117, 2020. https://doi.org/10.1016/j.rser.2019.109480

G. Mannina, et al., “Greenhouse gases from wastewater treatment — A review of modelling tools”, Science of The Total Environment, vol. 551–552, pp. 254-270, 2016. https://doi.org/10.1016/j.scitotenv.2016.01.163

M. Chehreghani, C. A. Cañizares and K. Bhattacharya, “Optimal Energy Management of Greenhouses in Smart Grids”, IEEE Transactions on Smart Grid, vol. 6, no. 2, pp. 827-835, 2015. https://doi.org/10.1109/TSG.2014.2372812

Z. Mhenni, M. Abbes and A. Mami, “Fractional order model of a greenhouse”, IREC The Sixth International Renewable Energy Congress, 2015. https://doi.org/10.1109/IREC.2015.7110857

W. Xiu-hua and Z. Lei, “Simulation on Temperature and Humidity Nonlinear Controller of Greenhouses”, Fourth International Conference on Intelligent Computation Technology and Automation, 2011. https://doi.org/10.1109/ICICTA.2011.138

M. Guoqi, Q. Linlin, L. Xinghua and W. Gang, “Modeling and predictive control of greenhouse temperature-humidity system based on MLD and time-series”, 34th Chinese Control Conference (CCC), 2015. https://doi.org/10.1109/ChiCC.2015.7259981

J. L. Villa, M. Duque, A. Gauthier and N. Rakoto-Ravalontsalama, “Modelamiento y control de sistemas híbridos”, Revista de ingeniería, no. 19, pp. 177-182, 2004. http://dx.doi.org/10.16924%2Friua.v0i19.452

X. Sun, W. Zhang, Z. Wang, Q. Cao and S. Gu, “Vegetable production in solar plastic greenhouses: past, present and future in Shandong Province”, XXVII International Horticultural Congress - IHC: International Symposium on Advances in Environmental Control, Automation and Cultivation Systems for Sustainable, High-Quality Crop Production under Protected Cultivation, 2006. https://doi.org/10.17660/ActaHortic.2007.761.39

T. DeJong, N. J. VanDeBraak and G. P. Bot, “A Wet Plate Heat Exchanger for Conditioning Closed Greenhouses”, Journal of Agricultural Engineering Research, vol. 56, no. 1, pp. 25-37, 1993. https://doi.org/10.1006/jaer.1993.1058

A. Najjar and A. Hasan, “Modeling of greenhouse with PCM energy storage”, Energy Conversion and Management, vol. 49, no. 11, pp. 3338-3342, 2008. https://doi.org/10.1016/j.enconman.2008.04.015

J. J. Opdam, G. G. Schoonderbeek, E. M. Heller and A. Gelder, “Closed greenhouse: A starting point for sustainable entrepreneurship in horticulture”, International Conference on Sustainable Greenhouse Systems - Greensys, 2004. https://doi.org/10.17660/ActaHortic.2005.691.61

J. B. Campen, “Greenhouse design applying CFD for Indonesian conditions”, International Conference on Sustainable Greenhouse Systems - Greensys, 2004. https://doi.org/10.17660/ActaHortic.2005.691.50

G. Zaragoza, M. Buchholz, P. Jochum and J. Pérez-Parra, “Watergy project: Towards a rational use of water in greenhouse agriculture and sustainable architecture”, Desalination, vol. 211, no. 1–3, pp. 296-303, 2007. https://doi.org/10.1016/j.desal.2006.03.599

P. J. Sonneveld, G. L. Swinkels, F. Kempkes, J. B. Campen and G. P. Bot, “Greenhouse with an integrated NIR filter and a solar cooling system”, International Symposium on Greenhouse Cooling, 2006. https://doi.org/10.17660/ActaHortic.2006.719.11

B. H. Vanthoor, C. Stanghellini, E. J. Henten and P. H. Visser, “A methodology for model-based greenhouse design: Part 1, a greenhouse climate model for a broad range of designs and climates”, Biosystems Engineering, vol. 110, no. 4, pp. 363-377, 2011. https://doi.org/10.1016/j.biosystemseng.2011.06.001

F. J. Baptista, “Modelling the climate in unheated tomato greenhouses and predicting Botrytis cinerea infection”, PhD. thesis, Universidade de Évora, Portugal, 2007.

D. Halleux, J. J. Nijskens and J. M. Deltour, “Adjustment and validation of a greenhouse climate dynamic model”, Bulletin des Recherches Agronomiques de Gembloux, vol. 26, no. 4, pp. 429-453, 1991.

H. F. Zwart, “Analyzing energy-saving options in greenhouse cultivation using a simulation model”, PhD. thesis, Wageningen University & Research, Netherlands, 1996.

I. Impron, S. Hemming and G. P. Bot, “Simple greenhouse climate model as a design tool for greenhouses in tropical lowland”, Biosystems Engineering, vol. 98, no. 1, pp. 79-89, 2007. https://doi.org/10.1016/j.biosystemseng.2007.03.028

W. Luo, H. Zwart, J. DaiI, X. Wang, C. Stanghellini and C. Bu, “Simulation of Greenhouse Management in the Subtropics, Part I: Model Validation and Scenario Study for the Winter Season”, Biosystems Engineering, vol. 90, no. 3, pp. 307-318, 2005. https://doi.org/10.1016/j.biosystemseng.2004.11.008

R. C. Ooteghem, “Optimal control design for a solar greenhouse”, PhD. thesis, Wageningen University & Research, Netherlands, 2007.

E. Fitz-Rodríguez, C. Kubota, G. A. Giacomelli, M. E. Tignor, S. B. Wilson and M. McMahon, “Dynamic modeling and simulation of greenhouse environments under several scenarios: A web-based application”, Computers and Electronics in Agriculture, vol. 70, no. 1, pp. 105-116, 2010. https://doi.org/10.1016/j.compag.2009.09.010

F. Buemi, M. Massa, G. Sandini and G. Costi, “The AGROBOT project”, Advances in Space Research, vol. 18, no. 1–2, pp. 185-189, 1996. https://doi.org/10.1016/0273-1177(95)00807-Q

N. Kondo, M. Monta M and T. Fujiura, “Fruit harvesting robots in Japan”, Adv Space Res, vol. 18, no. 1-2, 1996. https://doi.org/10.1016/0273-1177(95)00806-p

S. Kitamura, K. Oka and F. Takeda, “Development of Picking Robot in Greenhouse Horticulture”, SICE Annual Conference, 2005.

A. Barroso-García, “Control y monitorización de un invernadero a través de una aplicación móvil”, MSc. thesis, Universidad Politécnica de Madrid, España, 2015.

INTA crop technology, “Clima 16, software Sysclima”. [Online]. Available at: http://www.inta.com.es/index.php/es/control-climatico/clima-16

G. Berenz-Peña, L. Grande-Reyes and O. Pariona-Pariona, “Lectura remota de las variables de un invernadero usando telemetría”, 2011. [Online]. Available at: http://www.radiocomunicaciones.net/pdf/telemetria/lectura-remota-invernadero-telemetria.pdf

M. Ehrlich, L. Wisniewski and J. Jasperneite, “State of the Art and Future Applications of Industrial Wireless Sensor Networks”, Kommunikation und Bildverarbeitung in der Automation, 2017. https://doi.org/10.1007/978-3-662-55232-2_3

P. J. Sammons, T. Furukawa and A. Bulgin, “Autonomous Pesticide Spraying Robot for use in a Greenhouse”, Australasian Conference on Robotics and Automation, 2005.

J. W. Perea, “Diseño de un sistema de monitoreo, registro y control de temperatura y humedad para un cultivo de invernadero”, thesis, Universidad tecnológica de Pereira, Colombia, 2016.

DANE, “Censo de fincas productoras de flores”, 2010. [Online]. Available at: https://www.dane.gov.co/index.php/estadisticas-por-tema/agropecuario/censo-de-fincas-productoras-de-flores

Ministerio de agricultura, “Invernadero de alta tecnología en Antioquia”, 2009. [Online]. Available at: http://www.agronet.gov.co/Noticias/Paginas/Noticia196.aspx

J. P. Anzola-Anzola, “Detection and identification of urban heat islands: an approach from the state of the art”, Revista Vínculos, vol. 11, no. 2, pp. 127-139, 2014. https://doi.org/10.14483/2322939X.9726

Universidad Jorge Tadeo Lozano, “Utadeo y Holanda inauguraron el invernadero ‘inteligente’ más moderno de Colombia”, 2018. [Online]. Available at: https://www.utadeo.edu.co/es/noticia/destacadas/home/1/utadeo-y-holanda-inauguraron-el-invernadero-inteligente-mas-moderno-de-colombia

Cómo citar

APA

Osorio-Luna, D. F., y Molina-Ruiz, P. A. (2019). Automation and control of greenhouse implemented technologies: a review. Visión electrónica, 2(2), 381–394. https://doi.org/10.14483/22484728.18439

ACM

[1]
Osorio-Luna, D.F. y Molina-Ruiz, P.A. 2019. Automation and control of greenhouse implemented technologies: a review. Visión electrónica. 2, 2 (dic. 2019), 381–394. DOI:https://doi.org/10.14483/22484728.18439.

ACS

(1)
Osorio-Luna, D. F.; Molina-Ruiz, P. A. Automation and control of greenhouse implemented technologies: a review. Vis. Electron. 2019, 2, 381-394.

ABNT

OSORIO-LUNA, David Felipe; MOLINA-RUIZ, Paola Andrea. Automation and control of greenhouse implemented technologies: a review. Visión electrónica, [S. l.], v. 2, n. 2, p. 381–394, 2019. DOI: 10.14483/22484728.18439. Disponível em: https://revistas.udistrital.edu.co/index.php/visele/article/view/18439. Acesso em: 7 dic. 2024.

Chicago

Osorio-Luna, David Felipe, y Paola Andrea Molina-Ruiz. 2019. «Automation and control of greenhouse implemented technologies: a review». Visión electrónica 2 (2):381-94. https://doi.org/10.14483/22484728.18439.

Harvard

Osorio-Luna, D. F. y Molina-Ruiz, P. A. (2019) «Automation and control of greenhouse implemented technologies: a review», Visión electrónica, 2(2), pp. 381–394. doi: 10.14483/22484728.18439.

IEEE

[1]
D. F. Osorio-Luna y P. A. Molina-Ruiz, «Automation and control of greenhouse implemented technologies: a review», Vis. Electron., vol. 2, n.º 2, pp. 381–394, dic. 2019.

MLA

Osorio-Luna, David Felipe, y Paola Andrea Molina-Ruiz. «Automation and control of greenhouse implemented technologies: a review». Visión electrónica, vol. 2, n.º 2, diciembre de 2019, pp. 381-94, doi:10.14483/22484728.18439.

Turabian

Osorio-Luna, David Felipe, y Paola Andrea Molina-Ruiz. «Automation and control of greenhouse implemented technologies: a review». Visión electrónica 2, no. 2 (diciembre 6, 2019): 381–394. Accedido diciembre 7, 2024. https://revistas.udistrital.edu.co/index.php/visele/article/view/18439.

Vancouver

1.
Osorio-Luna DF, Molina-Ruiz PA. Automation and control of greenhouse implemented technologies: a review. Vis. Electron. [Internet]. 6 de diciembre de 2019 [citado 7 de diciembre de 2024];2(2):381-94. Disponible en: https://revistas.udistrital.edu.co/index.php/visele/article/view/18439

Descargar cita

Visitas

288

Dimensions


PlumX


Descargas

Los datos de descargas todavía no están disponibles.
Loading...