Publicado:

2022-12-20

Número:

Vol. 16 Núm. 2 (2022)

Sección:

Visión de Caso

Diseño de entornos de realidad virtual aplicables a sistemas de robótica asistencial: un análisis literario

Design of virtual reality environments applicable to assistive robotics systems: a literature review

Autores/as

  • Nicolas Esteban Caicedo-Gutiérrez Universidad Militar Nueva Granada
  • Lina Maria Peñuela-Calderón Universidad Militar Nueva Granada

Palabras clave:

Assistive Robotics, Performance, Upper Limb, User Experience, Virtual Reality (VR) (en).

Palabras clave:

Robótica Asistencial, Desempeño, Miembro Superior, Experiencia del Usuario, Realidad Virtual (RV) (es).

Resumen (es)

Los entornos de Realidad Virtual (RV) aplicables a sistemas de robótica asistencial pueden ser diseñados de manera que mejoren la efectividad y la experiencia de usuario de los procesos de rehabilitación debido a su naturaleza novedosa, logrando entretener a los pacientes mientras recuperan sus funciones motoras. Esta revisión literaria pretende analizar los criterios de diseño de entornos de RV utilizados en procesos de rehabilitación de miembro superior, identificando las características de entornos para rehabilitación de problemas asociados el sistema nervioso central y periféricos, los tipos de información que se realimenta al usuario para beneficiar los niveles de inmersión y su impacto en términos del desempeño y la experiencia del usuario en tratamiento. Un total de 32 artículos publicados en revistas indexadas de Scopus, IEEE, PubMed y Web of Science en los últimos cuatro años fueron revisados. Se presenta el proceso de selección de artículos, la división por las temáticas presentadas anteriormente y los lineamientos generales que pueden ser considerados para el diseño de entornos de RV aplicables a robots asistenciales en procesos de rehabilitación de miembro superior.

Resumen (en)

Virtual Reality (VR) environments can be applied to assistive robotics to improve the effectiveness and the user experience perception in the rehabilitation process due to its innovative nature, getting to entertain patients while they recover their motor functions. This literature review pretends to analyze some design principles of VR environments developed for upper limb rehabilitation processes. The idea is to identify features related to peripheral and central nervous systems, types of information included as feedback to increase the user's levels of immersion having a positive impact on the user's performance and experience during the treatment. A total of 32 articles published in Scopus, IEEE, PubMed, and Web of Science in the last four years were reviewed. We present the article selection process, the division by concepts presented previously, and the guidelines that can be considered for the design of VR environments applicable to assistive robots for upper limbs rehabilitation processes.

Referencias

M. S. Haque Sunny, M. I. Islam Zarif, I. Rulik, et. al., “Eye­gaze control of a wheelchair mounted 6DOF assistive robot for activities of daily living”, JNER, vol. 18, no. 1, 2021. https://doi.org/10.1186/s12984-021-00969-2

Q. Wang, K. Zhang, K. Zhao, M. Liao, “Smart Seeing Eye Dog Wheeled Assistive Robotics”, 2021 3rd International Symposium on Robotics & Intelligent Manufacturing Technology (ISRIMT) (2021), pp. 104­108, 2021. https://doi.org/10.1109/ISRIMT53730.2021.9596792

H. Lv, G. Yang, H. Zhou, X. Huang, H. Yang, Z. Pang. “Teleoperation of Collaborative Robot for Remote Dementia Care in Home Environments” IEEE Journal of Translational Engineering in Health and Medicine, 2020. https://doi.org/10.3390/electronics10101147

C. Torras, “Assistive robotics: Research challenges and ethics education initiatives”, Dilemata, vol. 30, 2019.

X. Cui, B. Wang, H. Lu, J. Chen, I. J. Rudas, “Design and Passive Training Control of Elbow Rehabilitation Robot”, Electronics, vol. 10, 2021. https://doi.org/10.3390/electronics10101147

J. Li, H. Yu, S. Zhou. “TAS: A Rehabilitation Training and Administration System Designed for Upper Limb Rehabilitation Robot”, 2019 5th International Conference on Control, Automation and Robotics, ICCAR 2019. https://doi.org/10.1109/ICCAR.2019.8813420

L. Shahmoradi, et. Al., “Virtual reality games for rehabilitation of upper extremities in stroke patients”, Journal of Bodywork & Movement Therapies, vol. 26, 2021. https://doi.org/10.1016/j.jbmt.2020.10.006

J. C. Martínez-Quintero, E. P. Estupiñán-Cuesta, M. F. Hernández-Sotaquira, “Esquema de comunicación digital usando generador vectorial y SDR”, Rev. Vínculos, vol. 18, no. 1, 2021.

N. Norouzi-Gheidari, P. Archambault, J. Fung. “Changes in arm kinematics of chronic stroke individuals following ”Assist-As-Asked” robot- assisted training in virtual and physical environments: A proof-of-concept study”, 2020. https://doi.org/10.1177/2055668320926054

A. Chillura, F. Tartamella, M.F. Pisano, E. Clemente, M. Lo Scrudato, G. Cacciato, A. Bramanti, S. Portaro, R.S. Calabrò A. Naro. “Advances in the rehabilitation of intensive care unit acquired weakness: A case report on the promising use of robotics and virtual reality coupled to physiotherapy”, Medicine, vol. 99, 2020. https://doi.org/10.1097/MD.0000000000020939

A. Cuesta-Gómez, P. Sánchez-Herrera-Baeza, R. Cano-De-La-Cuerda, E. Oña-Simbaña, C. Balaguer-Bernaldo-De-Quirós, A. Jardón-Huete, A. Martínez- Medina, C. Ortiz-Comino. “Effects of virtual reality associated with serious games for upper limb rehabilitation inpatients with multiple sclerosis: Randomi- zed controlled trial”, Journal of NeuroEngineering and Rehabilitation, vol. 17, no. 1, 2020. https://doi.org/10.1186/s12984-020-00718-x

N. García-Hernández, J. Corona-Cortés, V. Parra-Vega, L. García-Fuentes, R. D. González-Santibañez, “Biomechanical and functional effects of shoulder kinesio taping® on cerebral palsy children interacting with virtual objects”, Computer Methods in Biomechanics and Biomedical Engineering, vol. 22, no. 6, 2019. https://doi.org/10.1080/10255842.2019.1580361

D. H. de la Iglesia, A.S. Mendes, G. V. González, D. M. Jiménez-Bravo, J. F. de Paz Santana. “Connected elbow exoskeleton system for rehabilitation training based on virtual reality and context-aware”, Sensors, vol. 20, no. 3, 2020. https://doi.org/10.3390/s20030858

M. Alex, “Virtual reality art- making for stroke rehabilitation: Field study and technology probe”, International Journal of Human ­ Computer Studies, vol. 145, 2021. https://doi.org/10.1016/j.ijhcs.2020.102481

G. Jin, K. Jiang, S. Lee. “Development of virtual reality games for motor rehabilitation”, Journal of Telecommunication, Electronic and Computer Engineering, vol. 10, no. 4, 2018.

K. Chen, K. B Chen. “Task-Oriented and Imitation-Oriented Movements in Virtual Reality Exercise Performance and Design”, Human factors, 2021.

H. Xie, et. al., “A novel glasses-free virtual reality rehabilitation system on improving upper limb motor function among patients with stroke: A feasibility pilot study”, Medicine in Novel Technology and Devices, vol. 11, 2021.

R. de-la-Torre, “Robot-Aided Systems for Improving the Assessment of Upper Limb Spasticity: A Systematic Review”, Sensors, vol. 20, no. 18, 2020. https://doi.org/10.3390/s20185251

N. Garcia-Hernandez, “Virtual body representation for rehabilitation influences on motor performance of cerebral palsy children” Virtual Reality, vol. 25, no. 3, 2021. https://doi.org/10.1007/s10055-020-00481-3

M. J. Page, et. al., “De- claración PRISMA 2020: una guía actualizada para la publicación de revisiones sistemáticas”, Revista Española de Cardiología, vol. 74, no. 9, 2021. https://doi.org/10.1016/j.recesp.2021.06.016

R. L. Drake, “Anatomía para estudiantes”, Elsevier Health Sciences, 2020.

M. Paul, et.al., “Anatomy and Physiology in Healthcare”, 2017.

F. Toshiyuki, U. Junichi, R. Soekadar. “Neurorehabilitation: Neural Plasticity and Functional Recovery 2018”, Neural Plasticity, 2019. https://doi.org/10.1155/2019/7812148

O. Marin-Pardo, et. al., “A Virtual Reality Muscle-Computer Interface for Neuro- rehabilitation in Chronic Stroke: A Pilot Study”, Sensors, vol. 20, no. 13, 2020.

J. Patel, G. Fluet, Q. Qiu, A. Merians, M. Yarossi, E. Tunik, S. Adamovich, “Intensive virtual reality and robotic based upper limb training compared to usual care, and associated cortical reorganization, in the acute and early sub-acute periods post-stroke: A feasibility study”, Journal of Neuro Engineering and Rehabilitation, vol. 16, no. 1, 2019. https://doi.org/10.1186/s12984-019-0563-3

A. Vourvopoulos, “Efficacy and brain imaging correlates of an immersive motor imagery BCI-driven VR system for upper limb motor rehabilitation: A clinical case report”, Frontiers in Human Neuroscience, vol. 13, 2019. https://doi.org/10.3389/fnhum.2019.00244

F. Tartamella, et. al., “A case report on intensive, robot-assisted rehabilitation program for brainstem radionecrosis”, Medicine, vol. 99, no. 10, 2020.

M. A. Padilla-Castañeda, E. Sotgiu, M. Barsotti, A. Frisoli, M. Bergamasco, P. Orsini, A. Martiradonna, C. Laddaga. “An Orthopaedic Robotic-Assisted Rehabilitation Method of the Forearm in Virtual Reality Physiotherapy”, Journal of Healthcare Engineering, 2018. https://doi.org/10.1155/2018/7438609

M. Anzures, “Bases biomecánicas del sistema musculoesquelético”, (4a. ed.). Wolters Kluwer Health, 2013.

H. Erdogan, Y. Palaska, E. Masazade, D. Barkana, H. Ekenel. “Vision- based game design and assessment for physical exercise in a robot-assisted rehabilitation system”, IET Computer Vision, vol. 12, no. 1, 2018. https://doi.org/10.1049/iet-cvi.2017.0122

P. Henrique, “Effects of Exergame on Patients’ Balance and Upper Limb Motor Function after Stroke: A Randomized Controlled Trial”, Journal of Stroke and Cerebrovascular Diseases, vol. 28, no. 8, 2019. https://doi.org/10.1016/j.jstrokecerebrovasdis.2019.05.031

F. Parivash, L. Amuzadeh, A. Fallahi. “Design expanded BCI with improved efficiency for VR-embedded neurorehabilitation systems”, 19th CSI Interna­ tional Symposium on Artificial Intelligence and Signal Processing, AISP, 2017. https://doi.org/10.1109/AISP.2017.8324087

I. Bortone, “Immersive Virtual Environments and Wearable Haptic Devices in rehabilitation of children with neuromotor impairments: a single-blind randomized controlled crossover pilot study”, Journal of neuroengineering and rehabilitation, vol. 17, no. 1, 2020. https://doi.org/10.1186/s12984-020-00771-6

S. Zhang, Y. Fu, Q. Fu y S. Guo. “Coordinative motion-based bilateral reha- bilitation training system with exoskeleton and haptic devices for biomedical application”, Micromachines, vol. 10, no. 1, 2018. https://doi.org/10.3390/mi10010008

P. Kiper, “Virtual Reality for Upper Limb Rehabilitation in Subacute and Chronic Stroke: A Randomized Controlled Trial”, Archives of Physical Medicine and Rehabilitation, vol. 99, no. 5, 2018. https://doi.org/10.1016/j.apmr.2018.01.023

L. Johnson, “An Innovati- ve STRoke Interactive Virtual thErapy (STRIVE) Online Platform for Community- Dwelling Stroke Survivors: A Randomized Controlled Trial”, Archives of Physical Medicine and Rehabilitation, vol. 101, no. 7, 2020. https://doi.org/10.1016/j.apmr.2020.03.011

M. Torrisi, “Beyond motor recovery after stroke: The role of hand robotic rehabilitation plus virtual reality in improving cognitive function”, Journal of Clinical Neuroscience, vol. 92, 2021. https://doi.org/10.1016/j.jocn.2021.07.053

K. Daunoraviciene “Effects of robot-assisted training on upper limb functional recovery during the rehabilitation of poststroke patients”, Techno­ logy and health care: official journal of the European Society for Engineering and Medicine, vol. 26, 2018. https://doi.org/10.3233/THC-182500

N. Norouzi-Gheidari, “Feasibility and preliminary efficacy of a combined virtual reality, robotics and electrical stimulation intervention in upper extremity stroke rehabilitation”, Journal of neuroengineering and rehabilitation, vol. 18, no. 1, 2021. https://doi.org/10.1186/s12984-021-00851-1

J. Rong, “Mirror Visual Feedback Prior to Robot-Assisted Training Facilitates Rehabilitation After Stroke: A Randomized Controlled Study”, Frontiers in neurology, vol. 12, 2021. https://doi.org/10.3389/fneur.2021.683703

X. Huang, “The Combined Effects of Adaptive Control and Virtual Reality on Robot- Assisted Fine Hand Motion Rehabilitation in Chronic Stroke Patients: A Case Study”, Journal of Stroke and Cerebrovascular Diseases, vol. 27, no. 1, 2018. https://doi.org/10.1016/j.jstrokecerebrovasdis.2017.08.027

P. Sánchez-Herrera-Baeza, R. Cano-De-la-Cuerda, A. Cuesta-Gomez, E. D. Oña-Simbaña, C. Balaguer-Bernaldo De Quirós, A. Jardón-Huete, “The impact of a novel immersive virtual reality technology associated with serious games in parkinson’s disease patients on upper limb rehabilitation: A mixed methods intervention study”, Sensors, vol. 20, no. 8, 2020.

Y. Oh, “Efficacy of Virtual Reality Combined with Real Instrument Training for Patients with Stroke: A Randomized Controlled Trial”, Archives of Physical Medicine and Rehabilitation, vol. 100, no. 8, 2019. https://doi.org/10.1016/j.apmr.2019.03.013

P. Fernández-González, M. Carratalá-Tejada, E. Monge-Pereira, S. Collado- Vázquez, P. Sánchez-Herrera Baeza, A. Cuesta-Gómez, F. Molina-Rueda, “Leap motion controlled video game-based therapy for upper limb rehabilitation in patients with Parkinson’s disease: A feasibility study”, Journal of Neuro Engineering and Rehabilitation, vol. 16, no. 1, 2019.

M. R. Williams. “A pilot study into reaching performance after severe to moderate stroke using upper arm support”, PLoS ONE, vol. 13, no. 7, 2018. https://doi.org/10.1371/journal.pone.0200787

I. Büsching, A. Sehle, J. Stürner y J. Liepert. “Using an upper extremity exoske- leton for semi-autonomous exercise during inpatient neurological rehabilitation- a pilot study”, Journal of NeuroEngineering and Rehabilitation, vol. 15, no. 1, 2018. https://doi.org/10.1186/s12984-018-0415-6

A. Adomavičienė, J. Raistenskis, K. Daunoravičienė, R. Kubilius, L. Varžaitytė, “Influence of new technologies on post-stroke rehabilitation: A comparison of Armeo spring to the kinect system”, Medicina, vol. 55, no. 4, 2019. https://doi.org/10.3390/medicina55040098

A. Manuli, “Patients’ perspective and usability of innovation technology in a new rehabilitation pathway: An exploratory study in patients with multiple sclerosis”, Multiple Sclerosis and Related Disorders, vol. 44, no. 2020. https://doi.org/10.1016/j.msard.2020.102312

A. Warland, J. Ryan, A. Nowicky, J. Griscti, H. Levings, C. Kilbride, I. Paraskevo- poulos, E. Tsekleves. “The feasibility, acceptability and preliminary efficacy of a low-cost, virtual-reality based, upper-limb stroke rehabilitation device: a mixed methods study”, Disability and Rehabilitation, vol. 41, no. 18, 2019. https://doi.org/10.1080/09638288.2018.1459881

M. Sharkey, “Virtual Reality: Rehabilitation in Motor, Cognitive and Sen­ sorial Disorders”, Disability Studies. Nova Science Publishers, Inc, 2014.

T. Rose, “Immersion of virtual reality for rehabilitation - Review”, Applied Ergonomics, vol. 69, 2018. https://doi.org/10.1016/j.apergo.2018.01.009

A. Deblock-Bellamy, C. S. Batcho, C. Mercier, A. K. Blanchette. “Quantification of upper limb position sense using an exoskeleton and a virtual reality display”, Journal of NeuroEngineering and Rehabilitation, vol. 15, no. 1, 2018. https://doi.org/10.1186/s12984-018-0367-x

X. Wu, Haipeng Liu, “Virtual reality training system for upper limb rehabilitation”, 2019 14th IEEE Conference on Industrial Electronics and Applications (ICIEA), Industrial Electronics and Applications (ICIEA), 2019.

H. Liu, “Design of Limb Rehabilitation Training System Based on Virtual Reality Technology”, 2020 IEEE 4th Informa­ tion Technology, Networking, Electronic and Automation Control Conference (ITNEC), Automation Control Conference (ITNEC), 2020. https://doi.org/10.1109/ITNEC48623.2020.9084847

J. Zheng, “A Virtual Reality Rehabilitation Training System Based on Upper Limb Exoskeleton Robot”, 2018 10th International Conference on Intelligent Human­Machine Systems and Cybernetics (IHMSC), 2018. https://doi.org/10.1109/IHMSC.2018.00058

P. Johnson, “Reward and plasticity: Implica- tions for neurorehabilitation”, Handbook of clinical neurology, vol. 184, 2022. https://doi.org/10.1016/B978-0-12-819410-2.00018-7

Cómo citar

APA

Caicedo-Gutiérrez, N. E., y Peñuela-Calderón, L. M. (2022). Diseño de entornos de realidad virtual aplicables a sistemas de robótica asistencial: un análisis literario. Visión electrónica, 16(2). https://revistas.udistrital.edu.co/index.php/visele/article/view/19264

ACM

[1]
Caicedo-Gutiérrez, N.E. y Peñuela-Calderón, L.M. 2022. Diseño de entornos de realidad virtual aplicables a sistemas de robótica asistencial: un análisis literario. Visión electrónica. 16, 2 (dic. 2022).

ACS

(1)
Caicedo-Gutiérrez, N. E.; Peñuela-Calderón, L. M. Diseño de entornos de realidad virtual aplicables a sistemas de robótica asistencial: un análisis literario. Vis. Electron. 2022, 16.

ABNT

CAICEDO-GUTIÉRREZ, Nicolas Esteban; PEÑUELA-CALDERÓN, Lina Maria. Diseño de entornos de realidad virtual aplicables a sistemas de robótica asistencial: un análisis literario. Visión electrónica, [S. l.], v. 16, n. 2, 2022. Disponível em: https://revistas.udistrital.edu.co/index.php/visele/article/view/19264. Acesso em: 28 abr. 2024.

Chicago

Caicedo-Gutiérrez, Nicolas Esteban, y Lina Maria Peñuela-Calderón. 2022. «Diseño de entornos de realidad virtual aplicables a sistemas de robótica asistencial: un análisis literario». Visión electrónica 16 (2). https://revistas.udistrital.edu.co/index.php/visele/article/view/19264.

Harvard

Caicedo-Gutiérrez, N. E. y Peñuela-Calderón, L. M. (2022) «Diseño de entornos de realidad virtual aplicables a sistemas de robótica asistencial: un análisis literario», Visión electrónica, 16(2). Disponible en: https://revistas.udistrital.edu.co/index.php/visele/article/view/19264 (Accedido: 28 abril 2024).

IEEE

[1]
N. E. Caicedo-Gutiérrez y L. M. Peñuela-Calderón, «Diseño de entornos de realidad virtual aplicables a sistemas de robótica asistencial: un análisis literario», Vis. Electron., vol. 16, n.º 2, dic. 2022.

MLA

Caicedo-Gutiérrez, Nicolas Esteban, y Lina Maria Peñuela-Calderón. «Diseño de entornos de realidad virtual aplicables a sistemas de robótica asistencial: un análisis literario». Visión electrónica, vol. 16, n.º 2, diciembre de 2022, https://revistas.udistrital.edu.co/index.php/visele/article/view/19264.

Turabian

Caicedo-Gutiérrez, Nicolas Esteban, y Lina Maria Peñuela-Calderón. «Diseño de entornos de realidad virtual aplicables a sistemas de robótica asistencial: un análisis literario». Visión electrónica 16, no. 2 (diciembre 20, 2022). Accedido abril 28, 2024. https://revistas.udistrital.edu.co/index.php/visele/article/view/19264.

Vancouver

1.
Caicedo-Gutiérrez NE, Peñuela-Calderón LM. Diseño de entornos de realidad virtual aplicables a sistemas de robótica asistencial: un análisis literario. Vis. Electron. [Internet]. 20 de diciembre de 2022 [citado 28 de abril de 2024];16(2). Disponible en: https://revistas.udistrital.edu.co/index.php/visele/article/view/19264

Descargar cita

Visitas

18

Descargas

Los datos de descargas todavía no están disponibles.
Loading...