Publicado:
2023-05-25Número:
Vol. 17 Núm. 1 (2023)Sección:
Visión de Caso3 DOF robot programmed with PIC 18f45k22 for handling materials in a robotic cell
Robot de 3 DOF programado con PIC 18f45k22 para manipulación de materiales en una celda robotizada
Palabras clave:
3 DOF, I2C, Microcontroller, Peter Corke, Robotic arm, UART (en).Palabras clave:
3 DOF, I2C, Microcontrolador, Peter Corke, Brazo robótico, UART (es).Descargas
Resumen (en)
This paper presents the interaction between different devices for the operation of the prototype of a 3-degree robotic arm applied to a robotic cell, which was programmed with a low-cost microcontroller (PIC18F45K22), using serial communication peripherals (UART and I2C), LCD and three presence sensors (infrared). In addition, the robot work area is presented, making use of Peter Corke's robotics toolbox in Matlab, as well as the printed circuit board (PCB) designed in EasyEDA for the electrical connections of the microcontroller and the other electronic components that work simultaneously with the robot. Finally, the results obtained by means of points and trajectories with different operating modes are presented through physical and simulated tests in Matlab.
Resumen (es)
Este documento presenta la interacción entre diferentes dispositivos para el funcionamiento del prototipo de un brazo robótico de 3 grados aplicado a una celda robotizada, el cual fue programado con un microcontrolador de bajo costo (PIC18F45K22), utilizando periféricos de comunicación serial (UART e I2C), LCD y tres sensores de presencia (infrarrojos). Además, se presenta el área de trabajo del robot, haciendo uso del toolbox de robótica de Peter Corke en Matlab, así como la placa de circuito impreso (PCB) diseñada en EasyEDA para las conexiones eléctricas del microcontrolador y los demás componentes electrónicos que trabajan simultáneamente junto al robot. Finalmente, se presentan los resultados obtenidos mediante puntos y trayectorias con diferentes modos de funcionamiento mediante pruebas físicas y simuladas en Matlab.
Referencias
R. V. V. Petrescu et al., "The Inverse Kinematics of the Plane System 2-3 in a Mechatronic MP2R System, by a Trigonometric Method," Journal of Mechatronics and Robotics, vol. 1, no. 2, pp. 75-87, 2017. https://doi.org/10.3844/jmrsp.2017.75.87
S. P. Sethi et al., "Sequencing of parts and robot moves in a robotic cell," International Journal of Flexible Manufacturing Systems, vol. 4, no. 3-4, pp. 331-358, 1992. https://doi.org/10.1007/BF01324886
J. Blazewicz et al., "Scheduling tasks and vehicles in a flexible manufacturing system," International Journal of Flexible Manufacturing Systems, vol. 4, pp. 5-16, 1991. https://doi.org/10.1007/BF01325094
C. Deuerlein et al., "Improved design flexibility of open robot cells through tool-center-point monitoring," Procedia CIRP, vol. 100, pp. 295-300, 2021. https://doi.org/10.1016/j.procir.2021.05.069
G. Veiga et al., "Experiments with service-oriented architectures for industrial robotic cells programming," Robotics and Computer-Integrated Manufacturing, vol. 25, no. 4-5, pp. 746-755, 2009. https://doi.org/10.1016/j.rcim.2008.09.001
Q. Zhao et al., "Robotic Cell Rotation Based on the Minimum Rotation Force," IEEE Transactions on Automation Science and Engineering, vol. 12, no. 4, pp. 1504-1515, 2015. https://doi.org/10.1109/TASE.2014.2360220
G. Michalos et al., "Design Considerations for Safe Human-robot Collaborative Workplaces," in: Understanding the life cycle implications of manufacturing, 2015, pp. 248-253. https://doi.org/10.1016/j.procir.2015.08.014
E. Magrini et al., "Human-robot coexistence and interaction in open industrial cells," Journal of Robotics and Computer-Integrated Manufacturing, 2019, p. 101. https://doi.org/10.1016/j.rcim.2019.101846
Digchip, "datasheet PCA9685PW," DigChip IC database, 2009. [Online]. Available: https://www.digchip.com/datasheets/parts/datasheet/364/PCA9685PW-pdf.php
F. J. Zamora Navarro and A. Valiente Cristancho, "Tasa de muestreo ADC en microcontroladores avanzados de 8 bits," Visión electrónica, vol. 9, no. 1, pp. 128-138, 2015. https://doi.org/10.14483/22484728.11022
E. García-Guerrero et al., "Randomness improvement of chaotic maps for image encryption in a wireless communication scheme using PIC-microcontroller via Zigbee channels," Chaos, Solitons & Fractals, vol. 133, p. 109646, 2020. https://doi.org/10.1016/j.chaos.2020.109646
"I2C - Puerto, Introducción, trama y protocolo - HETPRO/TUTORIALES," HETPRO/TUTORIALES. [Online]. Available: https://hetpro-store.com/TUTORIALES/i2c/
Z. Boric and B. Markovic, "The talking thermometer simulator based on the DS1820 sensor and PIC18F45K22 microcontroller," in: 2012 20th Telecommunications Forum (TELFOR), 2012, pp. 544-547. https://doi.org/10.1109/TELFOR.2012.6419268
P. I. Corke, "A robotics toolbox for MATLAB," IEEE Robotics and Automation Magazine, vol. 3, no. 1, pp. 24-32, 1996. https://doi.org/10.1109/100.486658
Y. Fang and X. Chen, "Design and Simulation of UART Serial Communication Module Based on VHDL," in: 2011 3rd International Workshop on Intelligent Systems and Applications, 2011, pp. 1-4. https://doi.org/10.1109/ISA.2011.5873448
J. Calderón Acero and I. V. Parra Garzón, "Controladores difusos en microcontroladores: software para diseño e implementación," Visión electrónica, vol. 4, no. 2, pp. 64-76, 2010.
A. D'Souza et al., "Learning inverse kinematics," Proceedings 2001 IEEE/RSJ International Conference on Intelligent Robots and Systems, Expanding the Societal Role of Robotics in the Next Millennium, 2001. https://doi.org/10.1109/IROS.2001.973374
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Visitas
Descargas
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
atribución- no comercial 4.0 International