Publicado:
2023-06-19Número:
Vol. 17 Núm. 1 (2023)Sección:
Visión de CasoBrushless DC Motor Control System for Active Myoelectric Prostheses
Sistema de Control de Motores de Corriente Directa Sin Escobillas para Prótesis Activas Mioeléctricas
Palabras clave:
Active Prostheses, Brushless DC Motor, Hall effect sensors, PI Control, SimpleFOC, Vectorial Control (en).Palabras clave:
Prótesis Activa, Motor DC sin escobillas, Sensores de efecto Hall, Control PI, SimpleFOC, Control Vectorial (es).Descargas
Resumen (en)
A prosthesis is an artificial substitute for a missing part of the body that makes it possible to recover some degree of function of the lost limb. Prosthetics are classified as passive and active. These last ones require a driver system and a control system which are indispensable to determine if the motion a person is doing is executing effectively. In this sense, the driver system and the control system play a fundamental role in the functioning of active prosthetics when myoelectric sensors are used for their activation. The following paper presents the development of a Field Oriented Control of position for brushless direct current Motor equipped with Hall effect sensors. The system is built for a 5W EC-max 16 Ø16 mm brushless motor coupled to a GP 16 A Ø16 mm planetary reducer, together with an Arduino Uno board and a simple Field Oriented Control module. An open-loop position control system and a closed-loop position proportional-integral control system were implemented. The results indicate that closed-loop control shows a stability time, rise time, peak time and a steady state error less than the open-loop system. Also, that there is not notable hysteresis in the motor. These results will allow a more precise position control on a myoelectric prosthesis for transhumeral amputees.
Resumen (es)
Una prótesis en un sustituto artificial para una parte faltante del cuerpo que permite recuperar en cierto grado la función del miembro perdido. Las prótesis se clasifican en pasivas y activas, estas últimas requieren un sistema de actuadores y sistemas de control los cuales son indispensables para determinar si el movimiento que la persona realiza es ejecutado efectivamente. En este sentido, el sistema de accionamiento y de control juegan un papel fundamental en el funcionamiento de las prótesis activas cuando se usan señales mioeléctricas para su activación. Así, en este documento se presenta el desarrollo de un sistema de control de campo orientado de posición para motores de corriente directa sin escobillas equipados con sensores de efecto Hall. El sistema está constituido por un motor de corriente directa sin escobillas EC-max 16 Ø16 mm de 5W acoplado a un reductor planetario GP 16 A Ø16 mm, una placa Arduino Uno y el módulo para el controlador de campo orientado. Se implementó un sistema de control de posición en lazo abierto y un sistema de control proporcional-integral de posición en lazo cerrado. Los resultados indican que el sistema de lazo cerrado presenta un tiempo de estabilidad, tiempo de subida, tiempo pico y error de estado estacionario menor que el sistema de lazo abierto. También se ha demostrado que no hay histéresis notable en el motor. Estos resultados permitirán realizar un control de posición más preciso sobre una prótesis mioeléctricas para personas con amputación transhumeral.
Referencias
G. Niezen, P. Eslambolchilar, and H. Thimbleby, "Open-source hardware for medical devices," BMJ Innovations, vol. 2, no.o 2, pp. 78-83, 2016. https://doi.org/10.1136/bmjinnov-2015-000080
S. Bitzer and P. van der Smagt, "Learning EMG control of a robotic hand: towards active prostheses," in Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., 2006, pp. 2819-2823. https://doi.org/10.1109/ROBOT.2006.1642128
P. Slade, A. Akhtar, M. Nguyen, and T. Bretl, "Tact: Design and performance of an open-source, affordable, myoelectric prosthetic hand," in 2015 IEEE International Conference on Robotics and Automation (ICRA), 2015, pp. 6451-6456. https://doi.org/10.1109/ICRA.2015.7140105
R. Tarvirdilu-Asl and J. Bauman, "Efficiency Analysis of Induction Motor Control Strategies Using a System-Level EV Model," in 2019 IEEE Transportation Electrification Conference and Expo (ITEC), 2019, pp. 1-6. https://doi.org/10.1109/ITEC.2019.8790636
B. P. Reddy and A. Murali, "SoC FPGA-based field oriented control of BLDC motor using low resolution Hall sensor," in IECON 2016 - 42nd Annual Conference of the IEEE Industrial Electronics Society, 2016, pp. 2941-2945. https://doi.org/10.1109/IECON.2016.7793092
C. Melear, "Brushless DC motor positioning system," in Southcon/96 Conference Record, 1996, pp. 466-472. https://doi.org/10.1109/SOUTHC.1996.535111
S. J. Chapman, Electrical Machines. New York: Mc Graw Hill, 2012.
H.-C. Wu, M.-Y. Wen, and C.-C. Wong, "Speed control of BLDC motors using hall effect sensors based on DSP," in 2016 International Conference on System Science and Engineering (ICSSE), 2016, pp. 1-4. https://doi.org/10.1109/ICSSE.2016.7551633
I. Janpan, R. Chaisricharoen, and P. Boonyanant, "Control of the Brushless DC Motor in Combine Mode," Procedia Engineering, vol. 32, pp. 279-285, 2012. https://doi.org/10.1016/j.proeng.2012.01.1268
M. Rao, "Energy efficient Ceiling fans using BLDC motors- A practical implementation," Proc. pof the Intl. Conf. on Advances in Computer, Electronics and Electrical Engineering, n.o June, pp. 978-981, 2018.
R. M. Pindoriya, A. K. Mishra, B. S. Rajpurohit, and R. Kumar, "An Analysis of Vibration and Acoustic Noise of BLDC Motor Drive," in 2018 IEEE Power & Energy Society General Meeting (PESGM), 2018, pp. 1-5. https://doi.org/10.1109/PESGM.2018.8585750
K. Kudelina, B. Asad, T. Vaimann, A. Rassõlkin, A. Kallaste, and D. V Lukichev, "Main Faults and Diagnostic Possibilities of BLDC Motors," in 2020 27th International Workshop on Electric Drives: MPEI Department of Electric Drives 90th Anniversary (IWED), 2020, pp. 1-6. https://doi.org/10.1109/IWED48848.2020.9069553
F. Blohmke and P. H. Näder, Ottobock prosthetic compendium upper extremety prostheses. Duderstadt: Shiele & Schoen, 2011.
Simplefoc, "Simplefoc theory," 2020. [Online]. Available at: https://docs.simplefoc.com/foc_theory
L. A. Bermeo Varon, J. Gonzalo Alvarez, and W. M. Arenas, "Comparison of the performance of a PID controller on the level process using a programmable logic controller and an embedded system," Ingeniare. Revista chilena de ingeniería, vol. 29, n.o 4, pp. 622-632, 2021. https://doi.org/10.4067/S0718-33052021000400622
S. Thomsen, N. Hoffmann, and F. W. Fuchs, "Comparative study of conventional PI-control, PI-based state space control and model based predictive control for drive systems with elastic coupling," in 2010 IEEE Energy Conversion Congress and Exposition, 2010, pp. 2827-2835. https://doi.org/10.1109/ECCE.2010.5617756
J. D. Rivera, J. C. Castro, and J. H. Sandoval, "Control of a 900 hp dc motor," Electronic Vision, vol. 10, no.o 1, pp. 1-7, 2016. https://doi.org/10.14483/22484728.11643
P. Dobra, "Robust PI control for servo DC motor," in Proceedings of the International Conference on Control Applications, 2002, vol. 1, pp. 100-101 vol.1. https://doi.org/10.1109/CCA.2002.1040168
L. Zhou, W. Gruber, and D. L. Trumper, "Position Control for Hysteresis Motors: Transient-Time Model and Field-Oriented Control," IEEE Transactions on Industry Applications, vol. 54, no.o 4, pp. 3197-3207, 2018. https://doi.org/10.1109/TIA.2018.2812143
J. P. John, S. S. Kumar, and B. Jaya, "Space Vector Modulation based Field Oriented Control scheme for Brushless DC motors," in 2011 International Conference on Emerging Trends in Electrical and Computer Technology, 2011, pp. 346-351. https://doi.org/10.1109/ICETECT.2011.5760141
C.-L. Huang, G.-R. Chen, S.-C. Yang, and Y.-L. Hsu, "Comparison of High Speed Permanent Magnet Machine Sensorless Drive using Trapezoidal BLDC and Sinusoidal FOC under Insufficient PWM Frequency," in 2019 IEEE Energy Conversion Congress and Exposition (ECCE), 2019, pp. 321-325. https://doi.org/10.1109/ECCE.2019.8912495
P. K. Sharma and A. S. Sindekar, "Performance analysis and comparison of BLDC motor drive using PI and FOC," in 2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC), 2016, pp. 485-492. https://doi.org/10.1109/ICGTSPICC.2016.7955350
D. - M. Stănică, N. Bizon, and M. - C. Arva, "A brief review of sensorless motors position control," in 2021 13th International Conference on Electronics, Computers and Artificial Intelligence (ECAI), 2021, pp. 1-6. https://doi.org/10.1109/ECAI52376.2021.9515050
A. Skuric, H. S. Bank, R. Unger, O. Williams, and D. Gonzalez-Reyes, "SimpleFOC: A Field Oriented Control (FOC) Library for Controlling Brushless Direct Current (BLDC) and Stepper Motors," Journal of Open-Source Software, vol. 7, n.o 74, p. 4232, 2022. https://doi.org/10.21105/joss.04232
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Visitas
Descargas
Licencia
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
atribución- no comercial 4.0 International