Publicado:
2023-12-04Número:
Vol. 17 Núm. 2 (2023)Sección:
Visión InvestigadoraIdentificación de enfermedades y/o plagas en frutales mediante las técnicas de procesamiento de imágenes e inteligencia artificial
Identification of diseases and/or pests in fruit trees through image processing techniques and artificial intelligence
Palabras clave:
Classification, Early detection, Diseases, Image processing, Interpretability, Learning automatic (en).Palabras clave:
Clasificación, Detección temprana, Enfermedades, Procesamiento de imágenes, Aprendizaje automático, Interpretabilidad (es).Descargas
Resumen (es)
En este artículo se presenta un análisis de los artículos más relevantes del sector en los cuales se usaron técnicas de procesamiento de imágenes, segmentación, extracción de características y aprendizaje de máquinas para la detección e identificación de enfermedades y/o plagas en los frutales. De esta manera, se establece una ruta de las técnicas que recientemente se vienen trabajando por los investigadores en la disciplina de visión por computadora orientada a la agricultura, atendiendo la necesidad de reconocer de forma temprana la presencia de enfermedades en los cultivos, y de esta forma prevenirlas, lo cual redunda en aumentar la productividad agraria.
Resumen (en)
This article presents an analysis of the most relevant articles in the sector, in which image processing, segmentation, feature extraction and machine learning techniques were used for the detection and identification of diseases and/or pests in fruit trees. In this way, a route is established for the techniques that researchers have recently been working on in the discipline of computer vision, oriented towards agriculture, addressing the need to recognize early the presence of diseases in crops, and to thus prevent them, which results in increasing agricultural productivity.
Referencias
J. Homepage, D.-D. Leal-Lara, J. Barón-Velandia, and C.-E. Rocha-Calderón, "Revista Facultad de Ingeniería Interpretability in the Field of Plant Disease Detection: A Review," Revista Facultad de Ingeniería (Rev. Fac. Ing, vol. 30, no. 58, p. 2021, 2021. https://doi.org/10.19053/01211129.v30.n58.2021.13495
M. Massaro, K. Handley, C. Bagnoli, and J. Dumay, "Knowledge management in small and medium enterprises: a structured literature review," Journal of Knowledge Management, vol. 20, no. 2. Emerald Group Publishing Ltd., pp. 258-291, Apr. 04, 2016. https://doi.org/10.1108/JKM-08-2015-0320
C. Jackulin and S. Murugavalli, "A comprehensive review on detection of plant disease using machine learning and deep learning approaches," Measurement: Sensors, vol. 24, Dec. 2022. https://doi.org/10.1016/j.measen.2022.100441
J. G. A. Barbedo, "Factors influencing the use of deep learning for plant disease recognition," Biosyst Eng, vol. 172, pp. 84-91, Aug. 2018. https://doi.org/10.1016/j.biosystemseng.2018.05.013
X. Zhao, K. Li, Y. Li, J. Ma, and L. Zhang, "Identification method of vegetable diseases based on transfer learning and attention mechanism," Comput Electron Agric, vol. 193, Feb. 2022. https://doi.org/10.1016/j.compag.2022.106703
S. Xing and H. J. Lee, "Crop pests and diseases recognition using DANet with TLDP," Comput Electron Agric, vol. 199, Aug. 2022. https://doi.org/10.1016/j.compag.2022.107144
K. P. Ferentinos, "Deep learning models for plant disease detection and diagnosis," Comput Electron Agric, vol. 145, pp. 311-318, Feb. 2018. https://doi.org/10.1016/j.compag.2018.01.009
D. Argüeso et al., "Few-Shot Learning approach for plant disease classification using images taken in the field," Comput Electron Agric, vol. 175, Aug. 2020. https://doi.org/10.1016/j.compag.2020.105542
U. Barman, R. D. Choudhury, D. Sahu, and G. G. Barman, "Comparison of convolution neural networks for smartphone image based real time classification of citrus leaf disease," Comput Electron Agric, vol. 177, oct. 2020. https://doi.org/10.1016/j.compag.2020.105661
S. Khan and M. Narvekar, "Novel fusion of color balancing and superpixel based approach for detection of tomato plant diseases in natural complex environment," Journal of King Saud University - Computer and Information Sciences, vol. 34, no. 6, pp. 3506-3516, jun. 2022. https://doi.org/10.1016/j.jksuci.2020.09.006
T. U. Rehman, M. S. Mahmud, Y. K. Chang, J. Jin, and J. Shin, "Current and future applications of statistical machine learning algorithms for agricultural machine vision systems," Computers and Electronics in Agriculture, vol. 156. Elsevier B.V., pp. 585-605, Jan. 01, 2019. https://doi.org/10.1016/j.compag.2018.12.006
Atlasbig, “Producción Mundial de Duraznos y de Nectarinas por País” https://www.atlasbig.com/es-es/paises-por-produccion-de-duraznos-y-nectarinas"l":~:text=En%20todo%20el%20mundo%20se,anual%20de%201.529.919%20toneladas
K. Almanza, H. Criollo, A. Herrera, H. Balaguera, “Caracterización postcosecha del fruto de durazno [Prunus persica (L.) Batsch] cv. Dorado producido bajo condiciones de trópico alto”, Revista Colombiana de Ciencias Hortícolas, vol. 10, no. 2, 232-240, 2016. https://doi.org/10.17584/rcch.2016v10i2.5212
X. Zhang, S. Xu, “Investigación sobre la tecnología de procesamiento de imágenes del algoritmo de visión por computadora”, En 2020 Congreso Internacional de Visión por Computador, Imagen y Aprendizaje Profundo (CVIDL), 122-124, 2020.
P. Mateus, C. Nino, “Algoritmo adaptativo para identificar anomalías en objetos en movimiento usando visión artificial”, In IEEE ANDESCON, 1-4, 2016.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Visitas
Descargas
Licencia
Derechos de autor 2025 Visión electrónica

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
atribución- no comercial 4.0 International