Publicado:

2025-11-30

Número:

Vol. 19 Núm. 2 (2025)

Sección:

Visión Investigadora

Development of machine learning models for binary quality classification and noise removal in Pap smear samples

Desarrollo de modelos de machine learning para clasificación binaria de calidad y eliminación de ruido en muestras de Papanicolau

Autores/as

  • Heidy Vanessa Nuñez-Tovar Universidad El Bosque
  • Diana Lorena Forero Guevara Universidad El Bosque
  • Carlos Puentes-Morales Universidad El Bosque
  • Andres Felipe Mendoza-Cardona Universidad El Bosque
  • Sandra Janneth Perdomo-Lara Universidad El Bosque
  • Alex Campos Universidad El Bosque

Palabras clave:

Cervical cytology, Diffusion model, Transfer learning (en).

Palabras clave:

Citología cervical, Modelo de difusión, Transfer learning (es).

Resumen (en)

The subjectivity and agility in the review and quality classification of cervical cytology images represents a significant challenge due to the individual observer's criteria, as well as the high volume of samples requiring analysis. The project aims to develop two machine learning models; the first is a classification model that categorizes digitized samples as satisfactory or unsatisfactory. The MobileNet, VGG16, and Resnet50 architectures were compared, yielding better results with the latter, reaching a sensitivity of 0.93 for unsatisfactory samples. The second, a diffusion model for noise reduction where a UNet architecture with ResNet blocks was evaluated for images without noise and with added noise, and an unsharp mask was applied, achieving PSNR and SSIM metrics of 36 dB and 0.92 in noise-free images, and 31 dB and 0.72 in noisy images. The implementation of these models serves as a first step in the binary classification of cytological image quality and in improving the initial image quality.

Resumen (es)

La subjetividad y la agilidad en la revisión y clasificación de calidad de imágenes de citología cervical representa un desafío importante debido al criterio individual del observador, así como al alto volumen de muestras que requieren análisis. El proyecto tiene como objetivo desarrollar dos modelos de machine learning; el primero es un modelo de clasificación que categoriza las muestras digitalizadas como satisfactorias o insatisfactorias, se compararon las arquitecturas MobileNet, VGG16 y Resnet50, arrojando mejores resultados con esta última, llegando a una sensibilidad de 0.93 las muestras insatisfactorias. El segundo, un modelo de difusión para reducción de ruido donde se utilizó una arquitectura UNet con bloques ResNet, evaluado para imágenes sin ruido y con ruido agregado, y se aplicó una máscara de enfoque alcanzando métricas de PSNR y SSIM de 36 dB y 0.92 en imágenes sin ruido, y 31 dB y 0.72 en imágenes con ruido. La implementación de estos modelos funciona como un primer paso en la clasificación binaria de calidad de imágenes citológicas, y en el mejoramiento de la calidad inicial de las imágenes.

Referencias

“Cervical cancer.”Accessed: Nov. 21, 2024. [Online]. Available: https://www.who.int/es/news-room/fact-sheets/detail/cervical-cancer

International Agencyfor Research on Cancer, “World Fact Sheet,” Global Cancer Observatory, 2022. [Online]. Available: https://gco.iarc.who.int/media/globocan/factsheets/populations/900-world-fact-sheet.pdf

International Agencyfor Research on Cancer, “Colombia Fact Sheet,” Global Cancer Observatory, 2022. [Online]. Available: https://gco.iarc.who.int/media/globocan/factsheets/populations/170-colombia-fact-sheet.pdf

ARBhatt, A. Ganatra, and K. Kotecha, “Cervical cancer detection in pap smear whole slide images using convNet with transfer learning and progressive resizing,” PeerJ Comput Sci, vol. 7, pp. 1–18, 2021, doi: 10.7717/peerj-cs.348.

R. Gupta, A.Sarwar, and V. Sharma, “Screening of Cervical Cancer by Artificial Intelligence based Analysis of Digitized Papanicolaou-Smear Images,” 2017. [Online]. Available: www.ijcmr.com

X. Zhuet al., “Hybrid AI-assistive diagnostic model enables rapid TBS classification of cervical liquid-based thin-layer cell smears,” Nat Commun, vol. 12, no. 1, Dec. 2021, doi: 10.1038/s41467-021-23913-3.

R.Brixtel et al., “Whole Slide Image Quality in Digital Pathology: Review and Perspectives,” IEEE Access, vol. 10, pp. 131005–131035, 2022, doi: 10.1109/ACCESS.2022.3227437.

RJChalakkal, WH Abdulla, and SS Thulaseedharan, “Quality and content analysis of fundus images using deep learning,” Comput Biol Med, vol. 108, pp. 317–331, May 2019, doi: 10.1016/j.compbiomed.2019.03.019.

J. Wanget al., “Deep learning for quality assessment of retinal OCT images,” Biomed Opt Express, vol. 10, no. 12, p. 6057, Dec. 2019, doi: 10.1364/boe.10.006057.

T. Albuquerqueet al., “Image Quality Assessment of Cytology Images using Deep Learning.” [On-line]. Available: https://www.researchgate.net/publication/345626844

W. William, A.Ware, AH Basaza-Ejiri, and J. Obungoloch, “A pap-smear analysis tool (PAT) for detection of cervical cancer from pap-smear images,” Biomed Eng Online, vol. 18, no. 1, Feb. 2019, doi: 10.1186/s12938-019-0634-5.

FA.Croitoru, V. Hondru, RT Ionescu, and M. Shah, “Diffusion Models in Vision: A Survey,” Sep. 2022, doi: 10.1109/TPAMI.2023.3261988.

J. Ho, A. Jain, and P.Abbeel, “Denoising Diffusion Probabilistic Models,” Jun. 2020, [Online]. Available: http://arxiv.org/abs/2006.11239

EITHER.Ieremeiev, V. Lukin, K. Okarma, and K. Egiazarian, “Full-reference quality metric based on neural network to assess the visual quality of remote sensing images,” Remote Sens (Basel), vol. 12, no. 15, Aug. 2020, doi: 10.3390/RS12152349.

VVLukin, N. Ponomarenko, S. Krivenko, K. Egiazarian, J. Astola, and V. Lukin, “WEIGHTED MSE BASED METRICS FOR CHARACTERIZATION OF VISUAL QUALITY OF IMAGE DENOISING METHODS,” 2010. [Online]. Available: https://www.researchgate.net/publication/257259310

G.Palubinskas, “MYSTERY BEHIND SIMILARITY MEASURES MSE AND SSIM,” 2014.

N.E... Mastorakis and Valeri. Mladenov, Advances in visualization, imaging and simulation : 3rd WSEAS International Conference on Visualization, Imaging and Simulation (VIS '10) : University of Algarve, Faro, Portugal, November 3-5, 2010. WSEAS Press, 2010.

DSTuraga, Y. Chen, and J. Caviedes, “No reference PSNR estimation for compressed images,” in Signal Processing: Image Communication, Feb. 2004, pp. 173–184. doi: 10.1016/j.image.2003.09.001.

"ExperimentalComparison of PSNR and SSIM Metrics for Video Quality Estimation.”

P.Ndajah, H. Kikuchi, H. Watanabe, S. Muramatsu, and M. Yukawa, “An investigation on the quality of denoised images,” 2011. [Online]. Available: https://www.researchgate.net/publication/236897635

DRIMSetiadi, “PSNR vs SSIM: imperceptibility quality assessment for image steganography,” Multimed Tools Appl, vol. 80, no. 6, pp. 8423–8444, Mar. 2021, doi: 10.1007/s11042-020-10035-z.

J.Pocock et al., “TIAToolbox as an end-to-end library for advanced tissue image analytics,” Communications Medicine, vol. 2, no. 1, Dec. 2022, doi: 10.1038/s43856-022-00186-5.

“The SVS format —reaConverter.” Accessed: Nov. 03, 2024. [Online]. Available: https://www.reaconverter.es/convert/svs.html

“denoising-diffusion-models/denoising_diffusion_models.ipynb at main · EnricoPittini/denoising-diffusion-models · GitHub.” Accessed: Nov. 03, 2024. [Online]. Available: https://github.com/EnricoPittini/denoising-diffusion-models/blob/main/denoising_diffusion_models.ipynb

“Unsharp masking — skimage 0.24.0 documentation.” Accessed: Nov. 03, 2024. [Online]. Available: https://scikit-image.org/docs/stable/auto_examples/filters/plot_unsharp_mask.html

“Exploring ResNet50: An In-Depth Look at the Model Architecture and Code Implementation | by Nitish Kundu | Medium." Accessed: Nov. 03, 2024. [Online]. Available: https://medium.com/@nitishkundu1993/exploring-resnet50-an-in-depth-look-at-the-model-architecture-and-code-implementation-d8d8fa67e46f

KDKadam, S. Ahirrao, and K. Kotecha, “Efficient Approach towards Detection and Identification of Copy Move and Image Splicing Forgeries Using Mask R-CNN with MobileNet V1,” Comput Intell Neurosci, vol. 2022, 2022, doi: 10.1155/2022/6845326.

K.Kamal and H. EZ-ZAHRAOUY, “A comparison between the VGG16, VGG19 and ResNet50 architecture frameworks for classification of normal and CLAHE processed medical images,” Apr. 28, 2023. doi: 10.21203/rs.3.rs-2863523/v1.

Cómo citar

APA

Nuñez-Tovar, H. V., Forero Guevara, D. L., Puentes-Morales, C., Mendoza-Cardona, A. F., Perdomo-Lara, S. J., y Campos, A. (2025). Development of machine learning models for binary quality classification and noise removal in Pap smear samples. Visión electrónica, 19(2). https://revistas.udistrital.edu.co/index.php/visele/article/view/24488

ACM

[1]
Nuñez-Tovar, H.V. et al. 2025. Development of machine learning models for binary quality classification and noise removal in Pap smear samples. Visión electrónica. 19, 2 (nov. 2025).

ACS

(1)
Nuñez-Tovar, H. V.; Forero Guevara, D. L.; Puentes-Morales, C.; Mendoza-Cardona, A. F.; Perdomo-Lara, S. J.; Campos, A. Development of machine learning models for binary quality classification and noise removal in Pap smear samples. Vis. Electron. 2025, 19.

ABNT

NUÑEZ-TOVAR, Heidy Vanessa; FORERO GUEVARA, Diana Lorena; PUENTES-MORALES, Carlos; MENDOZA-CARDONA, Andres Felipe; PERDOMO-LARA, Sandra Janneth; CAMPOS, Alex. Development of machine learning models for binary quality classification and noise removal in Pap smear samples. Visión electrónica, [S. l.], v. 19, n. 2, 2025. Disponível em: https://revistas.udistrital.edu.co/index.php/visele/article/view/24488. Acesso em: 28 dic. 2025.

Chicago

Nuñez-Tovar, Heidy Vanessa, Diana Lorena Forero Guevara, Carlos Puentes-Morales, Andres Felipe Mendoza-Cardona, Sandra Janneth Perdomo-Lara, y Alex Campos. 2025. «Development of machine learning models for binary quality classification and noise removal in Pap smear samples». Visión electrónica 19 (2). https://revistas.udistrital.edu.co/index.php/visele/article/view/24488.

Harvard

Nuñez-Tovar, H. V. (2025) «Development of machine learning models for binary quality classification and noise removal in Pap smear samples», Visión electrónica, 19(2). Disponible en: https://revistas.udistrital.edu.co/index.php/visele/article/view/24488 (Accedido: 28 diciembre 2025).

IEEE

[1]
H. V. Nuñez-Tovar, D. L. Forero Guevara, C. Puentes-Morales, A. F. Mendoza-Cardona, S. J. Perdomo-Lara, y A. Campos, «Development of machine learning models for binary quality classification and noise removal in Pap smear samples», Vis. Electron., vol. 19, n.º 2, nov. 2025.

MLA

Nuñez-Tovar, Heidy Vanessa, et al. «Development of machine learning models for binary quality classification and noise removal in Pap smear samples». Visión electrónica, vol. 19, n.º 2, noviembre de 2025, https://revistas.udistrital.edu.co/index.php/visele/article/view/24488.

Turabian

Nuñez-Tovar, Heidy Vanessa, Diana Lorena Forero Guevara, Carlos Puentes-Morales, Andres Felipe Mendoza-Cardona, Sandra Janneth Perdomo-Lara, y Alex Campos. «Development of machine learning models for binary quality classification and noise removal in Pap smear samples». Visión electrónica 19, no. 2 (noviembre 30, 2025). Accedido diciembre 28, 2025. https://revistas.udistrital.edu.co/index.php/visele/article/view/24488.

Vancouver

1.
Nuñez-Tovar HV, Forero Guevara DL, Puentes-Morales C, Mendoza-Cardona AF, Perdomo-Lara SJ, Campos A. Development of machine learning models for binary quality classification and noise removal in Pap smear samples. Vis. Electron. [Internet]. 30 de noviembre de 2025 [citado 28 de diciembre de 2025];19(2). Disponible en: https://revistas.udistrital.edu.co/index.php/visele/article/view/24488

Descargar cita

Visitas

0

Descargas

Los datos de descargas todavía no están disponibles.
Loading...