Publicado:

2025-11-30

Número:

Vol. 19 Núm. 2 (2025)

Sección:

Visión de Ingeniería Aplicada

Maximizing winter comfort: A global bibliometric study of passive solar heating techniques

Maximizar el confort invernal: Un estudio bibliométrico global de las técnicas de calefacción solar pasiva

Autores/as

  • Antony Romero Granados Unidades Tecnológicas de Santander
  • Brayan Eduardo Tarazona Romero Unidades Tecnológicas de Santander
  • Javier Gonzalo Ascanio Villabona Unidades Tecnológicas de Santander

Palabras clave:

Bibliometric Analysis, Passive Heating, Solar Energy, Solar Radiation, Winter Comfort (en).

Palabras clave:

Análisis bibliométrico, calefacción pasiva, energía solar, radiación solar, confort invernal (es).

Resumen (en)

Passive heating techniques offer a sustainable alternative for harnessing solar energy to heat buildings during the winter months. This paper presents a bibliometric analysis of research on passive heating methods from 2004 to 2024. Using data from the Scopus database and VOSviewer software, the study examines the evolution of publications in this field, exploring the variety of passive heating techniques and their integration with solar radiation. Key research trends are identified through an analysis of term co-occurrence, leading authors, countries, continents, and institutions. The study highlights the most researched passive heating techniques and assesses their correlation with global solar radiation maps. Additionally, it evaluates the contributions from different continents, providing a comprehensive view of the global landscape of passive heating technologies and their potential impact on energy sustainability.

Resumen (es)

Las técnicas de calefacción pasiva ofrecen una alternativa sostenible para aprovechar la energía solar para calentar los edificios durante los meses de invierno. Este Article presenta un análisis bibliométrico de la investigación sobre métodos pasivos de calefacción desde 2004 hasta 2024. Utilizando datos de la base de datos Scopus y el software VOSviewer, el estudio examina la evolución de las publicaciones en este campo, explorando la variedad de técnicas de calefacción pasiva y su integración con la radiación solar. Las principales tendencias de investigación se identifican mediante un análisis de la co-ocurrencia de términos, autores principales, países, continentes e instituciones. El estudio destaca las técnicas de calefacción pasiva más investigadas y evalúa su correlación con los mapas globales de radiación solar. Además, evalúa las contribuciones de los distintos continentes, proporcionando una visión completa del panorama mundial de las tecnologías de calefacción pasiva y su impacto potencial en la sostenibilidad energética.

Referencias

[1] R. Isaksson y M. Rosvall, «Understanding building sustainability – the case of Sweden», Total Quality Management & Business Excellence, vol. 0, n.o 0, pp. 1-15, doi: 10.1080/14783363.2020.1853520.

[2] D. Urge-Vorsatz et al., «Advances toward a net-zero global building sector», Annual Review of Environment and Resources, vol. 45, pp. 227-269, 2023, doi: 10.1146/annurev-environ-012420-045843.

[3] S. Uniyal et al., «Passive solar heated buildings for enhancing sustainability in the Indian Himalayas», Renewable and Sustainable Energy Reviews, vol. 200, p. 114586, ago. 2024, doi: 10.1016/j.rser.2024.114586.

[4] L. Hernández-Callejo, S. Gallardo-Saavedra, y V. Alonso-Gómez, «A review of photovoltaic systems: Design, operation and maintenance», Solar Energy, vol. 188, pp. 426-440, ago. 2019, doi: 10.1016/j.solener.2019.06.017.

[5] L. Zhou, F. Qi, y X. Yan, «A review of research on the passive effect of building photovoltaic systems and analysis of influencing factors», Solar Energy, vol. 278, p. 112766, ago. 2024, doi: 10.1016/j.solener.2024.112766.

[6] D. Amaripadath y D. J. Sailor, «Reassessing energy-efficient passive retrofits in terms of indoor environmental quality in residential buildings in the United States», Energy and Buildings, vol. 319, p. 114564, sep. 2024, doi: 10.1016/j.enbuild.2024.114564.

[7] V. Anand, V. L. Kadiri, y C. Putcha, «Passive buildings: a state-of-the-art review», Journal of Infrastructure Preservation and Resilience, vol. 4, n.o 1, p. 3, ene. 2023, doi: 10.1186/s43065-022-00068-z.

[8] K. Hilliaho, Energy Saving Potential and Interior Temperatures of Glazed Spaces: Evaluation through Measurements and Simulations. Tampere University of Technology, 2017. Accedido: 19 de septiembre de 2024. [En línea]. Disponible en: https://trepo.tuni.fi/handle/10024/114510

[9] A. F. Tzikopoulos, M. C. Karatza, y J. A. Paravantis, «Modeling energy efficiency of bioclimatic buildings», Energy and Buildings, vol. 37, n.o 5, pp. 529-544, may 2005, doi: 10.1016/j.enbuild.2004.09.002.

[10] J. Fernandes, R. Malheiro, M. de F. Castro, H. Gervásio, S. M. Silva, y R. Mateus, «Thermal Performance and Comfort Condition Analysis in a Vernacular Building with a Glazed Balcony», Energies, vol. 13, n.o 3, Art. n.o 3, ene. 2020, doi: 10.3390/en13030624.

[11] K. Hilliaho, A. Köliö, T. Pakkala, J. Lahdensivu, y J. Vinha, «Effects of added glazing on Balcony indoor temperatures: Field measurements», Energy and Buildings, vol. 128, pp. 458-472, sep. 2016, doi: 10.1016/j.enbuild.2016.07.025.

[12] O. B. Joergensen y O. J. Hendriksen, «Glazed balconies and sun spaces - Energy savers or energy wasters?», jul. 2002, Accedido: 19 de septiembre de 2024. [En línea]. Disponible en: https://www.osti.gov/etdeweb/biblio/20314815

[13] K. M. Bataineh y N. Fayez, «Analysis of thermal performance of building attached sunspace», Energy and Buildings, vol. 43, n.o 8, pp. 1863-1868, ago. 2011, doi: 10.1016/j.enbuild.2011.03.030.

[14] J. L. Toroxel y S. M. Silva, «A Review of Passive Solar Heating and Cooling Technologies Based on Bioclimatic and Vernacular Architecture», Energies, vol. 17, n.o 5, Art. n.o 5, ene. 2024, doi: 10.3390/en17051006.

[15] Y. Liu, J. Jiang, D. Wang, y J. Liu, «The passive solar heating technologies in rural school buildings in cold climates in China», Journal of Building Physics, vol. 41, n.o 4, pp. 339-359, ene. 2018, doi: 10.1177/1744259117707277.

[16] L. Pajek y M. Košir, «Exploring Climate-Change Impacts on Energy Efficiency and Overheating Vulnerability of Bioclimatic Residential Buildings under Central European Climate», Sustainability, vol. 13, n.o 12, Art. n.o 12, ene. 2021, doi: 10.3390/su13126791.

[17] M. J. N. Oliveira Panão, S. M. L. Camelo, y H. J. P. Gonçalves, «Solar Load Ratio and ISO 13790 methodologies:

Indirect gains from sunspaces», Energy and Buildings, vol. 51, pp. 212-222, ago. 2012, doi:

10.1016/j.enbuild.2012.05.019.

[18] G. Gorgolis y D. Karamanis, «Solar energy materials for glazing technologies», Solar Energy Materials and Solar Cells, vol. 144, pp. 559-578, ene. 2016, doi: 10.1016/j.solmat.2015.09.040.

[19] R. V. Ralegaonkar y R. Gupta, «Review of intelligent building construction: A passive solar architecture approach», Renewable and Sustainable Energy Reviews, vol. 14, n.o 8, pp. 2238-2242, oct. 2010, doi: 10.1016/j.rser.2010.04.016.

[20] W. Mo, G. Zhang, X. Yao, Q. Li, y B. J. DeBacker, «Assessment of Passive Solar Heating Systems’ Energy-Saving Potential across Varied Climatic Conditions: The Development of the Passive Solar Heating Indicator (PSHI)», Buildings, vol. 14, n.o 5, Art. n.o 5, may 2024, doi: 10.3390/buildings14051364.

[21] E. Beaudette, E. Foo, H. Woelfle, M. T. I. Molla, y L. Dunne, «Characterizing Hybrid Active/Passive Heating Systems for Thermal Microclimate Control», doi: 10.1115/DMD2021-1065.

[22] M. Krzaczek y Z. Kowalczuk, «Gain Scheduling Control applied to Thermal Barrier in systems of indirect passive heating and cooling of buildings», Control Engineering Practice, vol. 20, n.o 12, pp. 1325-1336, dic. 2021, doi: 10.1016/j.conengprac.2012.07.007.

[23] E. Krüger, L. Fernandes, y S. Lange, «Thermal performance of different configurations of a roof pond-based system for subtropical conditions», Building and Environment, vol. 107, pp. 90-98, oct. 2016, doi:

10.1016/j.buildenv.2016.07.021.

[24] G. Tiwari, A. Tiwari, y Shyam, «Solar House», 2020, pp. 417-470. doi: 10.1007/978-981-10-0807-8_10.

[25] J. R. G. Chávez y F. F. Melchor, «Application of Combined Passive Cooling and Passive Heating Techniques to Achieve Thermal Comfort in a Hot Dry Climate», Energy Procedia, vol. 57, pp. 1669-1676, ene. 2020, doi:

10.1016/j.egypro.2014.10.157.

[26] M. Krzaczek y Z. Kowalczuk, «Thermal Barrier as a technique of indirect heating and cooling for residential buildings», Energy and Buildings, vol. 43, n.o 4, pp. 823-837, abr. 2021, doi: 10.1016/j.enbuild.2010.12.002.

[27] V. Calderaro y S. Agnoli, «Passive heating and cooling strategies in an approaches of retrofit in Rome», Energy and Buildings - ENERG BLDG, vol. 39, pp. 875-885, ago. 2021, doi: 10.1016/j.enbuild.2006.10.008.

[28] D. Low, A. Purvis, T. Reilly, y N. T. Cable, «The prolactin responses to active and passive heating in man», Experimental Physiology, vol. 90, n.o 6, pp. 909-917, 2021, doi: 10.1113/expphysiol.2005.031294.

[29] S. Kaplan, D. M. Demirbek, y N. Korkmaz Memis, «Design of passive radiative heating nanocomposite films by managing natural radiation energy», International Journal of Clothing Science and Technology, vol. ahead-of-print, n.o ahead-of-print, ene. 2024, doi: 10.1108/IJCST-01-2024-0019.

[30] Z. Wei y J. Calautit, «Evaluation of model predictive control (MPC) of solar thermal heating system with thermal energy storage for buildings with highly variable occupancy levels», Build. Simul., vol. 16, n.o 10, pp. 1915-1931, oct. 2023, doi: 10.1007/s12273-023-1067-4.

[31] M. Corcione, L. Fontana, y A. Quintino, «First analysis of a novel design of a solar chimney with absorber elements distributed in the air channel», Applied Thermal Engineering, vol. 230, p. 120539, jul. 2023, doi:

10.1016/j.applthermaleng.2023.120539.

[32] L. Ben-Alon y A. R. Rempel, «Thermal comfort and passive survivability in earthen buildings», Building and Environment, vol. 238, p. 110339, jun. 2023, doi: 10.1016/j.buildenv.2023.110339.

[33] K. Tungnung, A. Varma, Y. Kodama, K. Takemasa, G. Pde, y S. Roy, «Parametric strategies on passive heating techniques in cold-cloudy climate, Shillong towards net-zero energy», AIP Conference Proceedings, vol. 2760, n.o 1, p. 020022, jun. 2023, doi: 10.1063/5.0149181.

[34] B. Park, A. R. Rempel, A. K. L. Lai, J. Chiaramonte, y S. Mishra, «Reinforcement Learning for Control of Passive Heating and Cooling in Buildings⁎», IFAC-PapersOnLine, vol. 54, n.o 20, pp. 907-912, ene. 2021, doi: 10.1016/j.ifacol.2021.11.287.

[35] X. Yao, S. Han, y B. J. Dewancker, «Study on the Combined Effect of Multiple Passive Energy-Saving Methods for Rural Houses with Cold Alleys», Applied Sciences, vol. 11, n.o 12, Art. n.o 12, ene. 2021, doi: 10.3390/app11125636.

[36] S. Yang, B. J. Dewancker, y S. Chen, «Study on the Passive Heating System of a Heated Cooking Wall in Dwellings:

A Case Study of Traditional Dwellings in Southern Shaanxi, China», Int J Environ Res Public Health, vol. 18, n.o 7, p. 3745, abr. 2021, doi: 10.3390/ijerph18073745.

[37] G. Chiesa, «Geo-Climatic Indicators to Define Local Potential of Low-Energy Technologies Including Climate Changes», en Bioclimatic Approaches in Urban and Building Design, G. Chiesa, Ed., Cham: Springer International Publishing, 2021, pp. 383-400. doi: 10.1007/978-3-030-59328-5_20.

[38] T. Cullen et al., «The health benefits of passive heating and aerobic exercise: To what extent do the mechanisms overlap?», J Appl Physiol (1985), vol. 129, n.o 6, pp. 1304-1309, dic. 2020, doi: 10.1152/japplphysiol.00608.2020.

[39] M. Dabaieh, D. Maguid, D. El Mahdy, y O. Wanas, «An urban living lab monitoring and post occupancy evaluation for a Trombe wall proof of concept», Solar Energy, vol. 193, pp. 556-567, nov. 2019, doi:

10.1016/j.solener.2019.09.088.

[40] N. Khadka, A. L. Zannou, F. Zunara, D. Q. Truong, J. Dmochowski, y M. Bikson, «Minimal Heating at the Skin Surface During Transcranial Direct Current Stimulation», Neuromodulation: Technology at the Neural Interface, vol. 21, n.o 4, pp. 334-339, jun. 2018, doi: 10.1111/ner.12554.

[41] K. Naveen Kishore y J. Rekha, «A bioclimatic approach to develop spatial zoning maps for comfort, passive heating and cooling strategies within a composite zone of India», Building and Environment, vol. 128, pp. 190-215, ene. 2018, doi: 10.1016/j.buildenv.2017.11.029.

[42] N. R. Avezova y E. Yu. Rakhimov, «Orientation of heated premise in the design of insolation passive heating systems», Appl. Sol. Energy, vol. 53, n.o 4, pp. 338-343, oct. 2017, doi: 10.3103/S0003701X17040053.

[43] N. K. Khambadkone y R. Jain, «A bioclimatic analysis tool for investigation of the potential of passive cooling and heating strategies in a composite Indian climate», Building and Environment, vol. 123, pp. 469-493, oct. 2017, doi:

10.1016/j.buildenv.2017.07.023.

[44] A. G. Moura et al., «Power spectrum analysis of cardiovascular variability during passive heating in conscious rats», Journal of Thermal Biology, vol. 62, pp. 20-29, dic. 2016, doi: 10.1016/j.jtherbio.2016.08.011.

[45] N. Gupta y G. N. Tiwari, «Review of passive heating/cooling systems of buildings», Energy Science & Engineering, vol. 4, n.o 5, pp. 305-333, 2016, doi: 10.1002/ese3.129.

[46] J. R. Chavez y F. Melchor, «Application of Combined Passive Cooling and Passive Heating Techniques to Achieve Thermal Comfort in a Hot Dry Climate», Energy Procedia, vol. 57, dic. 2014, doi: 10.1016/j.egypro.2014.10.157.

[47] A.-T. Nguyen y S. Reiter, «A climate analysis tool for passive heating and cooling strategies in hot humid climate based on Typical Meteorological Year data sets», Energy and Buildings, vol. 68, pp. 756-763, ene. 2014, doi: 10.1016/j.enbuild.2012.08.050.

[48] D. Gagnon, C. G. Crandall, y G. P. Kenny, «Sex differences in postsynaptic sweating and cutaneous vasodilation», J Appl Physiol (1985), vol. 114, n.o 3, pp. 394-401, feb. 2013, doi: 10.1152/japplphysiol.00877.2012.

[49] K. Al-Sallal, «Vernacular Tower Architecture of Sana’a: Theory and Method for Deriving Sustainable Design Guidelines», 2014.

[50] A. Chel, J. K. Nayak, y G. Kaushik, «Energy conservation in honey storage building using Trombe wall», Energy and Buildings, vol. 40, n.o 9, pp. 1643-1650, ene. 2008, doi: 10.1016/j.enbuild.2008.02.019.

[51] C. A. Zeiss, «Accelerated methane oxidation cover system to reduce greenhouse gas emissions from MSW landfills in cold, semi-arid regions», Water Air Soil Pollut, vol. 176, n.o 1, pp. 285-306, oct. 2006, doi: 10.1007/s11270-006-9169z.

[52] A. Fernández-González y D. Overbey, «Proposed Fine Arts Pavilion at the University of Nevada, Las Vegas: The Beauty of Green Design», Solar World Congress: Solar Energy: Bringing Water to the World, ago. 2005, [En línea]. Disponible en: https://digitalscholarship.unlv.edu/arch_fac_articles/10

Cómo citar

APA

Romero Granados, A., Tarazona Romero, B. E., y Ascanio Villabona, J. G. (2025). Maximizing winter comfort: A global bibliometric study of passive solar heating techniques. Visión electrónica, 19(2). https://revistas.udistrital.edu.co/index.php/visele/article/view/24654

ACM

[1]
Romero Granados, A. et al. 2025. Maximizing winter comfort: A global bibliometric study of passive solar heating techniques. Visión electrónica. 19, 2 (nov. 2025).

ACS

(1)
Romero Granados, A.; Tarazona Romero, B. E.; Ascanio Villabona, J. G. Maximizing winter comfort: A global bibliometric study of passive solar heating techniques. Vis. Electron. 2025, 19.

ABNT

ROMERO GRANADOS, Antony; TARAZONA ROMERO, Brayan Eduardo; ASCANIO VILLABONA, Javier Gonzalo. Maximizing winter comfort: A global bibliometric study of passive solar heating techniques. Visión electrónica, [S. l.], v. 19, n. 2, 2025. Disponível em: https://revistas.udistrital.edu.co/index.php/visele/article/view/24654. Acesso em: 30 dic. 2025.

Chicago

Romero Granados, Antony, Brayan Eduardo Tarazona Romero, y Javier Gonzalo Ascanio Villabona. 2025. «Maximizing winter comfort: A global bibliometric study of passive solar heating techniques». Visión electrónica 19 (2). https://revistas.udistrital.edu.co/index.php/visele/article/view/24654.

Harvard

Romero Granados, A., Tarazona Romero, B. E. y Ascanio Villabona, J. G. (2025) «Maximizing winter comfort: A global bibliometric study of passive solar heating techniques», Visión electrónica, 19(2). Disponible en: https://revistas.udistrital.edu.co/index.php/visele/article/view/24654 (Accedido: 30 diciembre 2025).

IEEE

[1]
A. Romero Granados, B. E. Tarazona Romero, y J. G. Ascanio Villabona, «Maximizing winter comfort: A global bibliometric study of passive solar heating techniques», Vis. Electron., vol. 19, n.º 2, nov. 2025.

MLA

Romero Granados, Antony, et al. «Maximizing winter comfort: A global bibliometric study of passive solar heating techniques». Visión electrónica, vol. 19, n.º 2, noviembre de 2025, https://revistas.udistrital.edu.co/index.php/visele/article/view/24654.

Turabian

Romero Granados, Antony, Brayan Eduardo Tarazona Romero, y Javier Gonzalo Ascanio Villabona. «Maximizing winter comfort: A global bibliometric study of passive solar heating techniques». Visión electrónica 19, no. 2 (noviembre 30, 2025). Accedido diciembre 30, 2025. https://revistas.udistrital.edu.co/index.php/visele/article/view/24654.

Vancouver

1.
Romero Granados A, Tarazona Romero BE, Ascanio Villabona JG. Maximizing winter comfort: A global bibliometric study of passive solar heating techniques. Vis. Electron. [Internet]. 30 de noviembre de 2025 [citado 30 de diciembre de 2025];19(2). Disponible en: https://revistas.udistrital.edu.co/index.php/visele/article/view/24654

Descargar cita

Visitas

0

Descargas

Los datos de descargas todavía no están disponibles.
Loading...