Nuevas soluciones para la ecuación KDV por el método de la función-EXP

New solutions for the equation by the exp-function method

  • Álvaro H Salas Universidad Nacional de Colombia
Palabras clave: Nonlinear differential equation, nonlinear partial differential equation, third order evolution equation, KdV equation, solitonic solution, traveling wave, soliton, Exp-function method, partial differential equation, nonlinear evolution equation. (en_US)
Palabras clave: ecuación diferencial no lineal, ecuación diferencial parcial no lineal, ecuación de evolución de tercer orden, Ecuación KdV, soluciones solitónicas, onda viajera, soliton, método de la function-Exp, ecuación diferencial parcial, ecuación de evolución. (es_ES)

Resumen (es_ES)

En este artículo se obtienen soluciones para la ecuación KdV. Estas soluciones son obtenidas a través del método de la function-Exp, con ayuda del computador.

Resumen (en_US)

In this paper we obtain some exact solutions for the KdV equation. These solutions are obtained via the Exp-function method with the aid of a computer.



Descargas

La descarga de datos todavía no está disponible.

Referencias

P. G. Drazin, and R.S. Johnson, Solitons: an Introduction, Cambridge, London (1989).

P. L. Sachdev,- Nonlinear Diffusive Waves, Cambridge, London (1987).

N. J. Zabusky, and M. D. Kruskal, Phys. Rev. Letters 15, 240-243 (1965).

W. Hereman, and M. Takaoka, J. Phys. A: -Math. Gen. 23, 4805-4822 (1990).

A. K. Head, Comp. Phys. Comm., 77, 241-248 (1993).

W. Hereman, and -W. Zh-Lianl,'Acta Applicanda e Mathematica (1995).

R. Hirota, Phys. Rey. Lett. 27, 1192-1194 (1971).

Y. Matsuno, Bilinear Transformation . Method, Academic Press, Orlando (1984).

M. J. Ablowitz, and P. A. Clarkson, Solitons, Nonlinear Evolution Equations and Inverse Scat'tering, London Mathematical Society Lecture Note Series 149, Carnbridge Univ. [2] Press, London (1991).

C. S. Gardner, and G. K. Marikawa, Coúránt Inst. Math. Sci. Res. Rep. NYO-9082, N.Y. 2 University, New York (1960).

A. Jeffrey, and T. Kakutani, SIAM Rev. 14, 582-643 (1972).

A. C. Scott, F. Y. Chu, and D. W. McLaughlin, Proc. IEEE 61, 1443-1483 (1973).

R. M. Miura, SIAM Rev. 18, 412-459 (1976).

M. J. Ablowitz, and H. Segur, Solitons and the Inverse Scattering Transforrn, SIAM, Philadelphia (1981).

G. L. Lamb, Elements of Soliton Theory, John Wiley, New York (1980).

F. Calogero, and A. Degasperis, Spectral Transforms and Solitons I, Amsterdam, Holland (1982).

R. K. Dodd, J. C. Eilbeck, J. D. Gibbon, and H. C. Morris, Solitons and Nonlinear Wave Equations, Academic Press, New York (1982).

S. P. Novikov, S. V. Manakov, L. P. Pitaevskii, and V. E. Zakharov, Theory of Solitons. The Inverse Scattering Method, Plenurn, New York (1984).

Zhao Xuequin and others, A new Riccati equation expansion method with symbolic computation to construct new traveling wave solution of nonlinear differential equations, Applied Mathematics and Computation, 172 (2006) 24-39.

R. CONTE & M. MUSETTE , Link betwen solitary waves and projective Riccati equations, J. Phys. A Math. 25 (1992), 5609-5623.

ALVARO H. SALAS S., Some solutions for a type of generalized Sawada-Kotera equation, Applied Mathematics and Computation, 196 March, 2008), pages 812-817.

ABDUL Wazwaz, Analytic study of the fifth order integrable nonlinear evolution equation by using the tanh method, Applied Mathematics and Computation, 174 (2006), 289-299.

J.H. He, X.H. Wu, Chaos, Solitons & Fractals 30 (2006) 700.

Cómo citar
Salas, Álvaro H. (2009). Nuevas soluciones para la ecuación KDV por el método de la función-EXP. Visión electrónica, 3(1), 16-22. https://doi.org/10.14483/22484728.687
Publicado: 2009-06-02
Sección
Visión Investigadora

Artículos más leídos del mismo autor/a