Modelación y simulación computacional del proceso de evaporación osmótica

Modeling and computational simulation of the osmotic evaporation process

  • Freddy Forero Longas Universidad de Antioquia
  • Adriana Patricia Pulido Díaz Universidad del Valle
  • Sergio Andrés Cabrera Navarro Sena Regional Tolima
Palabras clave: Diffusion, hydrophobic membrane, heat transfer, mass transfer (en_US)
Palabras clave: Difusión, membrana hidrófoba, transferencia de calor, transferencia de masa. (es_ES)

Resumen (es_ES)

Contexto: Dentro de las tecnologías de procesamiento con membranas, la evaporación osmótica es una alternativa promisoria para la transformación de frutas exóticas, generando productos concentrados que pueden ser usados en la alimentación diaria, siendo más fáciles de consumir, disminuyendo gastos de transporte e incrementando la vida útil.

Método: En este trabajo de investigación se estudió y desarrollo una estrategia integral para la modelación y simulación multifísica de los fenómenos de transferencia de masa y movimiento en el proceso de evaporación osmótica, por medio del software Comsol® y Matlab®, usando un enfoque de geometría axial en dos dimensiones como simplificación del módulo real y el método de elementos finitos para la solución numérica, las simulaciones fueron validadas experimentalmente en un sistema de evaporación osmótica a escala de laboratorio.

Resultados: Los modelos utilizados y las simulaciones generadas fueron estadísticamente significativas (p<0,05) en predecir el comportamiento del flux, teniendo en cuenta el efecto de la velocidad y temperatura de alimentación, junto con la velocidad de la salmuera, obteniéndose correlaciones mayores al 96% entre los datos experimentales y los calculados.

Conclusiones: Se encontró que para las condiciones estudiadas el modelo difusional Knudsen es el más adecuado en describir la transferencia del vapor de agua a través de la membrana hidrófoba; las simulaciones desarrolladas describen de forma adecuada el proceso de evaporación osmótica, convirtiéndose en una herramienta para el desarrollo más rápido y económico de esta tecnología.

Resumen (en_US)

Context: Within the processing technologies with membranes, osmotic evaporation is a promising alternative for the transformation of exotic fruits, generating concentrated products that can be used in the daily diet, being easier to consume, reducing transportation costs and increasing shelf life.

Method: In this research, it was studied and developed a comprehensive strategy for multiphysics modeling and simulation of mass and momentum transfer phenomena in the process of osmotic evaporation through Comsol® and Matlab® software. It was used an axial geometry approach in two dimensions as simplifications of real module and the finite element method for the numerical solution. The simulations were validated experimentally in an osmotic evaporation system of laboratory scale.

Results: The models used and the generated simulations were statistically significant (p <0,05) in predicting the flux behavior, taking into account the effect of flow and temperature feed together with the brine flow, being obtained correlations above 96% between experimental and calculated data.

Conclusions: It was found that for the conditions studied the Knudsen diffusion model is most suitable to describe the transfer of water vapor through the hydrophobic membrane. Simulations developed adequately describe the process of osmotic evaporation, becoming a tool for faster economic development of this technology.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Freddy Forero Longas, Universidad de Antioquia
Ingeniero Agroindustrial, doctor en Ingeniería de Alimentos, profesor asistente de la Universidad de Antioquia. Antioquia
Adriana Patricia Pulido Díaz, Universidad del Valle
Ingeniera Agroindustrial, estudiante Doctorado en Ingeniería, Universidad del Valle. Cali
Sergio Andrés Cabrera Navarro, Sena Regional Tolima
Ingeniero Agroindustrial, coordinador Red Tecnoparque Nodo La Granja-Sena Regional Tolima. Tolima

Referencias

Alves, V.D. y Coelhoso, I.M. (2004). Effect of membrane characteristics on mass and heat transfer in the osmotic evaporation process. Journal of Membrane Science, 228(2), 159-167. DOI: 10.1016/j.memsci.2003.10.004

Bailey, A.F.G.; Barbe, A.M.; Hogan, P.A.; Johnson, R.A. y Sheng, J. (2012). The effect of ultrafiltration on the subsequent concentration of grape juice by osmotic distillation. Journal of Membrane Science, 164(1-2), 195-204. DOI: 10.1016/s0376-7388(99)00209-4

Bui, A. V.; Nguyen, H.M. y Joachim, M. (2003). Prediction of water activity of glucose and calcium chloride solutions. Journal of Food Engineering, 57(3), 243-248. DOI: 10.1016/s0260-8774(02)00304-7

Bui, A.V. y Nguyen, M.H. (2004). Prediction of viscosity of glucose and calcium chloride solutions. Journal of Food Engineering, 62(4), 345-349. DOI: 10.1016/s0260-8774(03)00249-8

Cassano, A.; Drioli, E.; Galaverna, G.; Marchelli, R.; Di Silvestro, G. y Cagnasso, P. (2003). Clarification and concentration of citrus and carrot juices by integrated membrane processes. Journal of Food Engineering, 57(2), 153-163. DOI: 10.1016/s0260-8774(02)00293-5

Celere, M. y Gostoli, C. (2002). The heat and mass transfer phenomena in osmotic membrane distillation. Desalination, 147(1-3), 133-138.

Courel, M.; Dornier, M.; Herry, J.-M.; Rios, G.M. y Reynes, M. (2000). Effect of operating conditions on water transport during the concentration of sucrose solutions by osmotic distillation. Journal of Membrane Science, 170(2), 281-289.

Courel, M.; Tronel-Peyroz, E.; Rios, G.M.; Dornier, M. y Reynes, M. (2001). The problem of membrane characterization for the process of osmotic distillation. Desalination, 140(1), 15-25.

Chen, B.; Gao, Z.; Jin, W. y Zheng, S. (2011). Analytical mass transfer solution of longitudinal laminar flow of Happel’s free surface model. International Journal of Heat and Mass Transfer, 54(17–18), 4000-4008. DOI:http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.04.025

Domingues, R.C.C.; Ramos, A.A.; Cardoso, V.L. y Reis, M.H.M. (2014). Microfiltration of passion fruit juice using hollow fibre membranes and evaluation of fouling mechanisms. Journal of Food Engineering, 121(0), 73-79. DOI:http://dx.doi.org/10.1016/j.jfoodeng.2013.07.037

Gawronski, R. y Wrzesinska, B. (2000). Kinetics of solvent extraction in hollow-fiber contactors. Journal of Membrane Science, 168(1-2), 213-222. DOI: 10.1016/s0376-7388(99)00317-8

Holz, M.; Heil, S.R. y Sacco, A. (2000). Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements. Physical Chemistry Chemical Physics, 2(20), 4740-4742.

Kujawski, W.; Sobolewska, A.; Jarzynka, K.; Güell, C.; Ferrando, M. y Warczok, J. (2013). Application of osmotic membrane distillation process in red grape juice concentration. Journal of Food Engineering, 116(4), 801-808. DOI:http://dx.doi.org/10.1016/j.jfoodeng.2013.01.033

Lipnizki, F. y Field, R.W. (2001). Mass transfer performance for hollow fibre modules with shell-side axial feed flow: using an engineering approach to develop a framework. Journal of Membrane Science, 193(2), 195-208. DOI: 10.1016/s0376-7388(01)00512-9

Liu, J. y Wei, J. (2014). Knudsen diffusion in channels and networks. Chemical Engineering Science, 111(0), 1-14. DOI:http://dx.doi.org/10.1016/j.ces.2014.01.014

Manawi, Y.M.; Khraisheh, M.A.M.M.; Fard, A.K.; Benyahia, F. y Adham, S. (2014). A predictive model for the assessment of the temperature polarization effect in direct contact membrane distillation desalination of high salinity feed. Desalination, 341(0), 38-49. DOI:http://dx.doi.org/10.1016/j.desal.2014.02.028

Martínez-Díez, L.; Florido-Díaz, F.J. y Vázquez-González, M.I. (2000). Study of Polarization Phenomena in Membrane Distillation of Aqueous Salt Solutions. Separation Science and Technology, 35(10), 1485 - 1501.

Mendieta R., M.N.; Montaña P., R.E. y Noguera V., L.A. (2012). Diseño de una cámara de ensayos termoeléctricos. Revista Tecnura, 16, 100-110.

Meng, S.; Ye, Y.; Mansouri, J. y Chen, V. (2014). Fouling and crystallisation behaviour of superhydrophobic nano-composite PVDF membranes in direct contact membrane distillation. Journal of Membrane Science, 463(0), 102-112. DOI:http://dx.doi.org/10.1016/j.memsci.2014.03.027

Naim, R.; Khulbe, K.C.; Ismail, A.F. y Matsuura, T. (2013). Characterization of PVDF hollow fiber membrane for CO2 stripping by atomic force microscopy analysis. Separation and Purification Technology, 109(0), 98-106. DOI:http://dx.doi.org/10.1016/j.seppur.2013.02.036

Nii, S.; Jebson, R.S. y Cussler, E.L. (2002). Membrane evaporators. Journal of Membrane Science, 201(1-2), 149-159.

Puin Á., H.D.; Noguera V., L.A. y Caicedo M., J.H. (2015). Análisis multifísico de un motor de reluctancia conmutada de rotor exterior usando elementos finitos. Revista Tecnura, 19, 151-156.

Qtaishat, M.; Matsuura, T.; Kruczek, B. y Khayet, M. (2008). Heat and mass transfer analysis in direct contact membrane distillation. Desalination, 219(1-3), 272-292.

Rahbari-Sisakht, M.; Ismail, A.F.; Rana, D. y Matsuura, T. (2013). Carbon dioxide stripping from diethanolamine solution through porous surface modified PVDF hollow fiber membrane contactor. Journal of Membrane Science, 427(0), 270-275. DOI:http://dx.doi.org/10.1016/j.memsci.2012.09.060

Rezakazemi, M.; Shirazian, S. y Ashrafizadeh, S.N. (2012). Simulation of ammonia removal from industrial wastewater streams by means of a hollow-fiber membrane contactor. Desalination, 285(0), 383-392. DOI:http://dx.doi.org/10.1016/j.desal.2011.10.030

Romero, J. (2003). Analysis of boundary layer and solute transport in osmotic evaporation. AIChE Journal, 49(11), 2783-2792.

Shaw, P.E.; Lebrun, M.; Dornier, M.; Ducamp, M.N.; Courel, M. y Reynes, M. (2001). Evaluation of Concentrated Orange and Passionfruit Juices Prepared by Osmotic Evaporation. Lebensmittel-Wissenschaft und-Technologie, 34(2), 60-65.

Suárez-Iglesias, O.; Medina, I.; Pizarro, C. y Bueno, J. L. (2008). On predicting self-diffusion coefficients in fluids. Fluid Phase Equilibria, 269(1–2), 80-92. DOI:http://dx.doi.org/10.1016/j.fluid.2008.05.004

Thanedgunbaworn, R.; Jiraratananon, R. y Nguyen, M.H. (2007a). Mass and heat transfer analysis in fructose concentration by osmotic distillation process using hollow fibre module. Journal of Food Engineering, 78(1), 126-135. DOI: 10.1016/j.jfoodeng.2005.09.023

Thanedgunbaworn, R.; Jiraratananon, R. y Nguyen, M.H. (2007b). Shell-side mass transfer of hollow fibre modules in osmotic distillation process. Journal of Membrane Science, 290(1-2), 105-113. DOI: 10.1016/j.memsci.2006.12.021

Thanedgunbaworn, R.; Jiraratananon, R. y Nguyen, M. H. (2009). Vapour Transport Mechanism in Osmotic Distillation Process. International Journal of Food Engineering, 5(5), 1-19. DOI:10.2202/1556-3758.1665

Vaillant, F.; Jeanton, E.; Dornier, M.; O'Brien, G.M.; Reynes, M. y Decloux, M. (2012). Concentration of passion fruit juice on an industrial pilot scale using osmotic evaporation. Journal of Food Engineering, 47(3), 195-202.

Valdés, H.; Romero, J.; Saavedra, A.; Plaza, A. y Bubnovich, V. (2013). Concentration of noni juice by means of osmotic distillation. Journal of Membrane Science, 330(1-2), 205-213.

Viguié, J.; Savart, T.; Duru, P.; Rouch, J.C. y Remigy, J.C. (2013). Characterisation of 3D porous macrostructure of hollow fibre membranes using X-ray tomography—Effects of some spinning process conditions. Journal of Membrane Science, 435(0), 11-20. DOI:http://dx.doi.org/10.1016/j.memsci.2013.01.062

Wahab, A. y Mahiuddin, S. (2001). Isentropic Compressibility and Viscosity of Aqueous and Methanolic Calcium Chloride Solutions. Journal of Chemical & Engineering Data, 46(6), 1457-1463. DOI:10.1021/je010072l

Wang, X.-D.; Wang, Z.-X.; Duan, Y.-Y.; An, B. y Lee, D.-J. (2014). Efficient evaluation of thermodynamic properties of water and steam on p–h surface. Journal of the Taiwan Institute of Chemical Engineers, 45(2), 372-379. DOI:http://dx.doi.org/10.1016/j.jtice.2013.06.016

Wu, J. y Chen, V. (2000). Shell-side mass transfer performance of randomly packed hollow fiber modules. Journal of Membrane Science, 172(1-2), 59-74. DOI: 10.1016/s0376-7388(00)00318-5

Yang, J.; Yu, X.; Yan, J.; Tu, S.-T. y Dahlquist, E. (2013). Effects of SO2 on CO2 capture using a hollow fiber membrane contactor. Applied Energy, 112(0), 755-764. DOI:http://dx.doi.org/10.1016/j.apenergy.2012.11.052

Zhang, L.-Z.; Huang, S.-M.; Chi, J.-H. y Pei, L.-X. (2012). Conjugate heat and mass transfer in a hollow fiber membrane module for liquid desiccant air dehumidification: A free surface model approach. International Journal of Heat and Mass Transfer, 55(13–14), 3789-3799. DOI:http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.03.034

Zhao, S.; Feron, P.H.M.; Xie, Z.; Zhang, J. y Hoang, M. (2014). Condensation studies in membrane evaporation and sweeping gas membrane distillation. Journal of Membrane Science, 462(0), 9-16. DOI:http://dx.doi.org/10.1016/j.memsci.2014.03.028

Cómo citar
Forero Longas, F., Pulido Díaz, A. P., & Cabrera Navarro, S. A. (2016). Modelación y simulación computacional del proceso de evaporación osmótica. Tecnura, 20(49), 29-44. https://doi.org/10.14483/udistrital.jour.tecnura.2016.3.a02
Publicado: 2016-07-01
Sección
Investigación