Stiffness of a granular base under optimum and saturated water contents

Rigidez de una base granular bajo humedad óptima y saturada

  • Fausto Andrés Molina Gómez Universidad Militar Nueva Granada
  • Javier Fernando Camacho-Tauta Universidad Militar Nueva Granada
  • Oscar Javier Reyes-Ortiz Universidad Militar Nueva Granada
Palabras clave: granular bases, hyperbolic model, local transducers, small-strain stiffness, unload-reload moduli. (en_US)
Palabras clave: bases granulares, modelo hiperbólico, módulos de descarga-recarga, rigidez a pequeñas deformaciones, sensores locales. (es_ES)

Resumen (en_US)

Objective: This research work addressed the comparison of the stiffness of a granular base under optimum water content and total saturation conditions.

Methodology: The methodology focused in the development of an experimental program and the computation of a function, which permits to assess the elastic moduli of the material. A triaxial cell equipped by local LVDT transducers, capable of managing different stress paths, was used to measure the small-strain stiffness of a granular base under two different conditions of moisture. The material was compacted with optimum water content and subjected to a series of loading-unloading cycles under isotropic conditions. In addition, identical specimens were prepared to be saturated and the experimental procedure was repeated to obtain the moduli in these new circumstances. The moduli were assessed by a hyperbolic model, and its relationship with the confining pressure was computed.

Results: The results indicated that numerical model was adjusted to the experimental results. In addition, it was found that the elastic moduli decrease 3% to 8% in conditions of total saturation versus the condition of optimum water contents. Conclusions: The small-strain stiffness in the granular base depends on the water content, and the moisture can affect the deformation in the pavement structures.

 

Resumen (es_ES)

Objetivo: Este trabajo de investigación aborda la comparación de la rigidez de una base granular con contenido de agua óptimo y condiciones de completa saturación.

Metodología: La metodología de trabajo se centró en el desarrollo de un plan experimental y el cálculo de una función que permite evaluar los módulos elásticos del material. Se utilizó una cámara triaxial para medir la rigidez del suelo, a pequeñas deformaciones, bajo dos condiciones diferentes de humedad. El equipo utilizado es capaz de generar trayectorias de esfuerzos y fue equipado con transductores locales tipo LVDT. El material se compactó con contenido óptimo de agua y se sometió a una serie de ciclos de carga-descarga en condiciones isótropas. Por otro lado, se prepararon las muestras idénticas para ser saturadas y repetir el mismo el procedimiento experimental bajo estas nuevas circunstancias. Los módulos fueron evaluados mediante un modelo hiperbólico y se calculó su relación con la presión de confinamiento.

Resultados: Los resultados indicaron que el modelo numérico se ajustó a los resultados experimentales. Además, se encontró que los módulos de elasticidad disminuyen de 3% a 8% en condiciones de completa saturación frente a la condición de humedad óptima.

Conclusiones: La rigidez a pequeñas deformaciones de la base granular depende de la humedad y que el contenido de agua puede inducir deformaciones en las estructuras de pavimento.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Fausto Andrés Molina Gómez, Universidad Militar Nueva Granada
Ingeniero Civil, Candidato a Magíster en Ingeniería Civil. Docente y Asistente de Investigación de la Universidad Militar Nueva Granada. Bogotá
Javier Fernando Camacho-Tauta, Universidad Militar Nueva Granada
Ingeniero Civil, Magíster en Ingeniería Civil, doctor en Ingeniería Civil. Profesor Asociado de la Universidad Militar Nueva Granada. Bogotá
Oscar Javier Reyes-Ortiz, Universidad Militar Nueva Granada
Ingeniero Civil, Magíster en Ingeniería Civil, doctor en Ingeniería Civil. Profesor Titular de la Universidad Militar Nueva Granada. Bogotá

Referencias

Aalto, K. R. (1972). Diagenesis of Orthoquartzites Near Bogota Colombia. Journal of Sedimentary Research, 42(2). http://doi.org/10.1306/74D72540-2B21-11D7-8648000102C1865D

ASTM International. D2850 - Standard Test Method for Unconsolidated-Undrained Triaxial Compression Test on Cohesive Soils (2007).

ASTM International. D422 - Standard Test Method for Particle-Size Analysis of Soils, 63 Annual Book of ASTM Standards 1–8 (2007).

ASTM International. D4318 - Standard Test Methods for Liquid Limit, Plastic Limit, and Plasticity Index of Soils (2010). http://doi.org/10.1520/D4318-10.

ASTM International. D698 - Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort (12 400 ft-lbf /ft3 (600 kN-m /m3)) (2014).

ASTM International. D854 - Standard Test Methods for Specific Gravity of Soil Solids by Water Pycnometer (2014).

Atkinson, J. (2007). The Mechanics of Soils and Foundations, Second Edition - (2nd ed.). CRC Press Book.

Boscardin, M. D., Selig, E. T., Lin, R., & Yang, G. (1990). Hyperbolic Parameters for Compacted Soils. Journal of Geotechnical Engineering, 116(1), 88–104. http://doi.org/10.1061/(ASCE)0733-9410(1990)116:1(88)

Camacho-Tauta, J. F., Jiménez Álvarez, J. D., & Reyes-Ortiz, O. J. (2012). A Procedure to Calibrate and Performance The Bender Element Test. DYNA, 79(176), 10–18. Retrieved from http://www.revistas.unal.edu.co/index.php/dyna/article/view/26165/43542

Chen, D.-H., Chang, G., & Fu, H. (2011). Limiting Base Moduli to Prevent Premature Pavement Failure. Journal of Performance of Constructed Facilities, 25(6), 587–597.

Colesanti, C., Ferretti, A., Novali, F., Prati, C., & Rocca, F. (2003). SAR monitoring of progressive and seasonal ground deformation using the permanent scatterers technique. In IEEE Transactions on Geoscience and Remote Sensing (Vol. 41, pp. 1685–1701). http://doi.org/10.1109/TGRS.2003.813278

Coronado, O., Caicedo, B., Taibi, S., Correia, A. G., & Fleureau, J.-M. (2011). A macro geomechanical approach to rank non-standard unbound granular materials for pavements. Engineering Geology, 119(1-2), 64–73. http://doi.org/10.1016/j.enggeo.2011.02.003

Duncan, J. M., & Chang, C. Y. (1970). Nonlinear Analysis of Stress and Strain in Soils. ASCE Journal of the Soil Mechanics and Foundations Division, 95(5), 1629–1653.

Fredlund, D. G., & Rahardjo, R. (1993). Soil Mechanics for Unsaturated Soils. John Wiley & Sons INC.

Hardin, B. O., & Black, W. L. (1968). Vibration Modulus of Normally Consolidated Clay. Journal of the Soil Mechanics and Foundations Division, 94(2), 353–370.

Hicher, P. Y., & Chang, C. S. (2008). Elastic model for partially saturated granular materials. Journal of Engineering Mechanics, 134(6), 505–513. http://doi.org/10.1061/(ASCE)0733-9399(2008)134:6(505)

Inam, A., Ishikawa, T., & Miura, S. (2012). Effect of principal stress axis rotation on cyclic plastic deformation characteristics of unsaturated base course material. Soils and Foundations, 52(3), 465–480. http://doi.org/10.1016/j.sandf.2012.05.006

Ishikawa, T., Zhang, Y., Tokoro, T., & Miura, S. (2014). Medium-size triaxial apparatus for unsaturated granular subbase course materials. Soils and Foundations, 54(1), 67–80. http://doi.org/10.1016/j.sandf.2013.12.007

Jafarzadeh, F., & Sadeghi, H. (2012). Experimental study on dynamic properties of sand with emphasis on the degree of saturation. Soil Dynamics and Earthquake Engineering, 32(1), 26–41. http://doi.org/10.1016/j.soildyn.2011.08.003

Kondner, R. L. (1963). A hyperbolic stress-strain formulation for sands. In 2nd Pan-Am Conf. on Soil Mech. and Found. Engrg (p. 289). Sao Paulo: Northwestern University.

Lekarp, F., & Dawson, A. (1998). Modelling permanent deformation behaviour of unbound granular materials. Construction and Building Materials. http://doi.org/10.1016/S0950-0618(97)00078-0

Li, L., Saboundjian, S., Liu, J., & Xiong, Z. (2013). Permanent Deformation Behavior of Alaskan Granular Base Materials. Planning for Sustainable Cold Regions © ASCE 2013 ISCORD 2013: Planning for Sustainable Cold Regions © ASCE, (1955), 428–435.

Lu, N., & Kaya, M. (2014). Power Law for Elastic Moduli of Unsaturated Soil. Journal of Geotechnical and Geoenvironmental Engineering, 140(1), 46–56. http://doi.org/10.1061/(ASCE)GT.1943-5606.0000990

Mazari, M., Navarro, E., Abdallah, I., & Nazarian, S. (2014). Comparison of numerical and experimental responses of pavement systems using various resilient modulus models. Soils and Foundations, 54(1), 36–44. http://doi.org/10.1016/j.sandf.2013.12.004

Ortiz-Pulido, M. del P., Gaitán-Serrano, J. F., & Camacho-Tauta, J. F. (2014). Modelo unificado de curvas de degradación del módulo cortante en arenas del río Guayuriba. DYNA, 81(184), 77–84. http://doi.org/10.15446/dyna.v81n184.36603

Paredes, L. A., Reyes-Ortiz, Ó. J., & Camacho-Tauta, J. F. (2014). Comportamiento de mezclas asfálticas densas a partir del ensayo de viga semicircular simplemente apoyada. Revista Tecnura, 18(41), 103. http://doi.org/10.14483/udistrital.jour.tecnura.2014.3.a08

Perera, Y., Zapata, C., Houston, W., & Houston, S. (2004). Long-Term Moisture Conditions under Highway Pavements (ASCE). In M. K. Y. and E. Kavazanjian (Ed.), Geotechnical Engineering for Transportation Projects (pp. 1132–1143). Los Angeles: ASCE. http://doi.org/10.1061/40744(154)102

Ramos Cañón, A. M. (2015). Influence of the void ratio and the confining on the static liquefaction in slopes in changi sand. Revista Tecnura, 19(43), 63. http://doi.org/10.14483/udistrital.jour.tecnura.2015.1.a04

Salour, F., & Erlingsson, S. (2015). Resilient modulus modelling of unsaturated subgrade soils: laboratory investigation of silty sand subgrade. Road Materials and Pavement Design, 16(3), 553–568. http://doi.org/10.1080/14680629.2015.1021107

Seed, H. B., & Lee, K. L. (1970). Liquefaction of Saturated Sands During Cyclic Loading. Journal of the Soil Mechanics and Foundations Division, 92(6), 105–134.

Stark, T. D., Ebeling, R. M., & Vettel, J. J. (1994). Hyperbolic Stress‐Strain Parameters for Silts. Journal of Geotechnical Engineering, 120(2), 420–441. http://doi.org/10.1061/(ASCE)0733-9410(1994)120:2(420)

Timoshenko, S., & Goodier, J. N. (1986). Theory of Elasticity (3rd ed., Vol. 49). Mc Graw Hill.

Wood, D. M. (1991). Soil Behaviour and Critical State Soil Mechanics (1st ed.). Cambridge University Press.

Yang, X., & Han, J. (2012). Analytical Model for Resilient Modulus and Permanent Deformation of Geosynthetic-Reinforced Unbound Granular Material. http://dx.doi.org/10.1061/(ASCE)GT.1943-5606.0000879, 139(9), 1443–1453. http://doi.org/10.1061/(ASCE)GT.1943-5606.0000879.

Zhang, Q., Li, L., & Chen, Y. (2013). Analysis of Compression Pile Response Using a Softening Model, a Hyperbolic Model of Skin Friction, and a Bilinear Model of End Resistance. http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000640.

Zhang, Y., Ishikawa, T., Tokoro, T., & Nishimura, T. (2014). Influences of degree of saturation and strain rate on strength characteristics of unsaturated granular subbase course material. Transportation Geotechnics, 1(2), 74–89. http://doi.org/10.1016/j.trgeo.2014.04.001

Cómo citar
Molina Gómez, F. A., Camacho-Tauta, J. F., & Reyes-Ortiz, O. J. (2016). Rigidez de una base granular bajo humedad óptima y saturada. Tecnura, 20(49), 75-85. https://doi.org/10.14483/udistrital.jour.tecnura.2016.3.a05
Publicado: 2016-07-01
Sección
Investigación