Evaluation of abrasion of a modified drainage mixture with rubber waste crushed (GCR)

Evaluación del desgaste por abrasión de una mezcla drenante modificada con residuo de llanta triturada (GCR)

  • Yee Wan Yung Vargas Universidad Francisco de Paula Santander
  • Jorge Eliécer Cordoba Maquilón Universidad Nacional de Colombia sede Medellín
  • Hugo Alexander Rondón Quintana. Universidad Distrital Francisco José de Caldas
Palabras clave: Modified asphalt, abrasive wear, porous asphalt, Marshall stability, GCR, Resilient modulus. (en_US)
Palabras clave: Asfaltos modificados, desgaste por abrasión, mezclas drenantes, Estabilidad Marshall, GCR, Módulo resiliente (es_ES)

Resumen (en_US)

General description: Porous asphalt mixtures are defined as an asphalt concrete with air voids content of around 20% and 25%, and the typical binder is a modified asphalt with some elastomeric polymer. Unlike other studies reported on the subject: i) The effect of mixing temperature (160 ° C and 170 ° C) between the asphalt and the GCR (wet modification) was evaluated, ii) Likewise was evaluated the effect of compaction temperature between modified asphalt and granular aggregate (100 ° C, 110 ° C and 130 ° C).

Method: This study measured in laboratory, the resistance to abrasion (Cantabria trial) and the stiffness under monotonic (Marshall test) and cyclical (resilient modulus) loading of a porous asphalt mixture MD. Asphalt cement CA 60-70 (PG 64-22) was used as binder. This binder was modified with recycling tyre rubber (GCR) by wet way (The GCR and binder are completely mixed to form asphalt rubber).

Results: a significant increase in resistance to abrasion, resistance under monotonic loading and stiffness under cyclic loading of the MD is reported when this mixture is modified with GCR.

Conclusion: The results showed that there is a highlighted influence of mix temperature (between asphalt and GCR) and compaction temperature (modified asphalt and aggregate) on the behavior of the MD modified with GCR. 

Resumen (es_ES)

Contexto: Las mezclas asfálticas drenantes son definidas como aquellas cuyos vacíos con aire oscilan entre 20% y 25%, y emplean como ligante, un asfalto modificado con algún polímero principalmente elastomérico. A diferencia de otros estudios reportados sobre el tema, se evaluó el efecto de la temperatura de mezcla (160° C y 170° C) entre el asfalto y el GCR (vía húmeda de modificación), y entre el asfalto ya modificado y el agregado pétreo (100° C, 110° C y 130° C).

Método: El presente estudio evaluó en laboratorio, la resistencia al desgaste por abrasión (ensayo Cántabro) y la rigidez bajo carga monotónica (ensayo Marshall) y cíclica (módulo resiliente) que experimentó una mezcla asfáltica drenante MD fabricada con asfalto modificado con grano de caucho reciclado de llanta (GCR) por vía húmeda (se modifica el asfalto con el GCR a alta temperatura). Como asfalto base para la fabricación de las mezclas se utilizó cemento asfáltico CA 60-70 (PG 64-22).

Resultados: se reporta un incremento notable en la resistencia al desgaste por abrasión, a la resistencia bajo carga monotónica y la rigidez bajo carga cíclica de la MD cuando se modifica con GCR.

Conclusiones: Como conclusión general se resalta la influencia que tienen las temperaturas de mezcla entre el asfalto y el GCR, así como la de compactación (asfalto modificado y agregado) sobre el comportamiento de la MD modificada con GCR.

Palabras clave: Asfaltos modificados; desgaste por abrasión; mezclas drenantes; Estabilidad Marshall; GCR; Módulo resiliente.

Descargas

La descarga de datos todavía no está disponible.

Biografía del autor/a

Yee Wan Yung Vargas, Universidad Francisco de Paula Santander

Ingeniera civil, especialista en Vías y Transporte, magíster en Ingeniería-Infraestructura y Sistemas de Transporte. Docente de la Universidad Francisco de Paula Santander

Jorge Eliécer Cordoba Maquilón, Universidad Nacional de Colombia sede Medellín

Ingeniero civil, especialista en Vías y Transporte, especialista en Psicología Organizacional, magíster en Ingeniería-Infraestructura y Sistemas de Transporte, doctor en Ingeniería. Docente Universidad Nacional de Colombia

Hugo Alexander Rondón Quintana., Universidad Distrital Francisco José de Caldas

Ingeniero Civil, Magister en Ingeniería Civil, Doctor en Ingeniería. Profesor Asociado,  Universidad Distrital Francisco José de Caldas

Referencias

Alvarez, A. E., Martin, A. E. and Estakhri, C. (2011). A review of mix design and evaluation research for permeable friction course mixtures. Construction and Building Materials, 25(3), 1159–1166.

Anderson, K. W., Pierce, L. M., Uhlmeyer, J. S. and Weston, J. (2008). Evaluation of long-term pavement performance and noise characteristics of open-graded friction courses. Post Construction and Performance Report, Experimental Feature WA 05-06, Contract 7134, WA-RD 683.1.

Bahia, H. U. and Davies, R. (1994). Effect of crumb rubber modifiers CRM on performance-related properties of asphalt binders. J. Assoc. Asph. Paving Technol., 63, 414–449.

Botero, J. H., Valentín, M. O., Suárez, O. M., Santos, J., Acosta, F. J., Cáceres, A. y Pando, M. A. (2005). Gomas trituradas: estado del arte, situación actual y posibles usos como materia prima en Puerto Rico. Revista Internacional de Desastres Naturales, Accidentes e Infraestructura Civil, 5(1), 69-86.

Cao, W. (2007). Study on properties of recycled tire rubber modified

asphalt mixtures using dry process. Construction and Building Materials, 21, 1011–1015.

Cao, W. D., Yao, Z. Y., Shang, Q. S., Li, Y. Y. and Yang, Y. S. (2011). Performance evaluation of large stone porous asphalt-rubber mixture. Advanced Materials Research, Vol. 150-151, 1184–1190.

Carlson, D. D. and Zhu, H. (1999). Asphalt-Rubber - An anchor to crumb rubber markets. Third Joint UNCTAD/IRSG Workshop on Rubber and the Environment International Rubber Forum, Veracruz, México.

Cetin, A. (2013). Effects of crumb rubber size and concentration on performance of porous asphalt mixtures. International Journal of Polymer Science, ID 789612, 1-10.

Choubane, B., Sholar, G. A., Musselman, J. A. and Page, G. C. (1999). Ten-year performance evaluation of asphalt-rubber surface mixes. Transportation Research Record, 1681, 10–18.

Cooper, S. B. Jr., Mohammad, L. N. and Abadie C. (2007). Evaluation of field projects using crumb rubber modified asphaltic concrete. Report No. FHWA/LA.04/393, LTRC / Louisiana State University.

Dong, Y. and Tan, Y. (2011). Mix design and performance of crumb rubber modified asphalt SMA. Geotechnical Special Publication, No. 212, ASCE, 78-86.

Hsu, T., Chen, S. and Hung, K. (2011). Performance evaluation of asphalt rubber in porous asphalt-concrete mixtures. Journal of Materials in Civil Engineering, 23(3), 342–349.

Hsu, T. W. and Tseng, K. H. (1996). Effect of rest periods on fatigue response of asphalt concrete mixtures. Journal of Transportation Engineering, 122(4), 316-322.

Huang, S. C. (2008). Rubber concentrations on rheology of aged asphalt binders. Journal of Materials in Civil Engineering, 20(3), 221-229.

Huang, Y., Bird, R. N. and Heidrich, O. (2007). A review of the use of recycled solid waste materials in asphalt pavements. Resources, Conservation and Recycling, 52(1), 58-73.

Ibrahim, M. R., Katman, H. Y., Karim, M. R., Koting, S. and Mashaan, N. S. (2014). The effect of crumb rubber particle size to the optimum binder content for open graded friction course. The Scientific World Journal, Article ID 240786, 1-8.

IDU - Instituto de Desarrollo Urbano. (2011). Especificaciones técnicas generales de materiales y construcción para proyectos de infraestructura vial y de espacio público para Bogotá D. C.. Bogotá D. C.

IDU - Instituto de Desarrollo Urbano y Universidad de Los Andes. (2002). Estudio de las mejoras mecánicas de mezclas asfálticas con desechos de llantas. Informe Final. Bogotá D. C., septiembre.

IDU - Instituto de Desarrollo Urbano y Universidad de Los Andes. (2005). Segunda fase del estudio de las mejoras mecánicas de mezclas asfálticas con desechos de llantas – Pista de prueba. Reporte Final, Contrato IDU – 306 – 003.

INVIAS - Instituto Nacional de Vías. (2013). Especificaciones generales para construcción de carreteras. Bogotá D.C.

Katman, H. Y., Karim, M. R., Mahrez, A. and Ibrahim, M. R. (2005). Performance of wet mix rubberised porous asphalt. Proceedings of the Eastern Asia Society for Transportation Studies, Vol. 5, 695-708.

Khodary, M. H. F. (2010). Evaluation of fatigue resistance for modified asphalt concrete mixtures based on dissipated energy concept. Darmstadt: Technische Universität.

Kumar, P., Mehndiratta, H. C. and Singh, K. (2010). Comparative study of rheological behavior of modified binders for high-temperature areas. Journal of Materials in Civil Engineering, 22(10), 978-984.

Lee, S. J., Amirkhanian, S. N., Putman, B. J. and Kim, K. W. (2007). Laboratory study on the effects of compaction on the volumetric and rutting properties of CRM asphalt mixtures. Journal of Materials in Civil Engineering, 19(12), 1079-1089.

Lu, Q. and Harvey, J. (2011). Laboratory evaluation of open-graded asphalt mixes with small aggregates and various binders and additives. Transportation Research Record, 2209, 61–69.

Magalhães, J. H. and Soares, J. B. (2003). The effect of crumb rubber gradation and binder-rubber interaction time on the mechanical properties of asphalt-rubber mixtures (dry process). In: Asphalt Rubber Conference, Brazilia, Brazil, December.

Nelson, P. M. and Abbott, P. G. (1990). Acoustical performance of previous Macadam surfaces for high-speed roads. Transportation Research Record, 1265, 25–33.

Neto, S. A. D., Farias, M. M., Pais, J. C., Pereira, P. and Picado Santos, L. (2003). Properties of asphalt-rubber binders related to characteristics of the incorporated crumb rubber. In: Asphalt Rubber Conference, Brazilia, Brazil, December, 1-13.

Othman, A. (2006). Fracture resistance of rubber-modified asphaltic mixtures exposed to high-temperature cyclic aging. Journal of Elastomers and Plastics, Vol. 38, 19-30.

Partl, M. N., Pasquini, E., Canestrari, F. and Virgili, A. (2010). Analysis of water and thermal sensitivity of open graded asphalt rubber mixtures. Construction and Building Materials, 24(3), 283–291.

Peralta, J., Silva, H. M. R. D., Machado, A. V., Pais, J., Pereira, P. A. A., and Sousa, J. B. (2010). Changes in rubber due to its interaction with bitumen when producing asphalt rubber. Road Materials and Pavement Design, 11(4), 1009–1031.

Punith, V. S., Suresha S. N., Sridhar, R., Sunil, B. and Veeraragavan, A. (2012). Laboratory investigation of open-graded friction course mixtures containing polymers and cellulose fibers. Journal of Transportation Engineering, 138(1), 67-74.

Punith, V. S., Xiao, F. and Amirkhanian, S. N. (2011). Effects of moist aggregates on the performance of warm mix asphalt mixtures containing non-foaming additives. Journal of Testing and Evaluation, 39(5), 1-11.

Putman, B. J. (2005). Qualification of the effects of crumb rubber in CRM binder. Ph.D. Disertación, Clemson University, South Carolina, USA.

Rondón, H. A. y Reyes, F. A. (2015). Pavimentos – Materiales, Construcción y Diseño. Editorial ECOE, Bogotá D.C., Colombia.

Ruiz, A., Alberola, R., Perez, F. and Sanchez, B. (1990). Porous asphalt mixtures in Spain. Transportation Research Record, 1265, 87–94.

Shen, J., Amirkhanian, S. N. and Lee, S. J. (2007). HP-GPC characterization of rejuvenated aged CRM binders. Journal of Materials in Civil Engineering, 19(6), 515-522.

Singh, S., Nimmo, W., Gibbs, B. M. and Williams, P. T. (2009). Waste tyre rubber as a secondary fuel for power plants. Fuel, 88(12), 2473-2480.

Tahmoressi, M. (2001). Evaluation of asphalt rubber pavements in Texas. Rubber Pavements Association Report, Tempe, Arizona.

Wang, L., Chang, C. Q., Xing, Y. and Xing, Y. M. (2009). Viscoelastic mechanical properties of crumb rubber modified asphalt mixture. In: ICCTP 2009: Critical Issues in Transportation Systems Planning, Development, and Management, ASCE, 2153-2158

Wang, J. C. and Zeng, X. (2006). Influence of temperature and pressure on the dynamic properties of rubber-modified asphalt concrete. Journal of Materials in Civil Engineering, 18(1), 125-131.

West, R. C., Watson, D. E., Turner, P. A. and Casola, J. R. (2010). Mixing and compaction temperatures of asphalt binders in hot-mix asphalt. NCHRP Report 648, TRB.

Xiao, F. and Amirkhanian, S. N. (2009). HP-GPC Approach to evaluating laboratory prepared long-term aged rubberized asphalt binders”. In: GeoHunan International Conference 2009, Geotechnical Special Publication No. 191, 42-48.

Zhong, X. G., Zeng, X. and Rose, J. G. (2002). Shear modulus and damping ratio of rubber-modified asphalt mixes and unsaturated subgrade soils. Journal of Materials in Civil Engineering, 14(6), 496-502.

Zoorob, S. E., Castro, J. P. and Pereira, L. A. (2012). Assessing low shear viscosity as the new bitumen softening point test. Construction and Building Materials, 27(1), 357–367.

Cómo citar
Yung Vargas, Y. W., Cordoba Maquilón, J. E., & Rondón Quintana., H. A. (2017). Evaluación del desgaste por abrasión de una mezcla drenante modificada con residuo de llanta triturada (GCR). Tecnura, 20(50), 106-118. https://doi.org/10.14483/22487638.11565
Publicado: 2017-02-01
Sección
Estudio de caso