DOI:
https://doi.org/10.14483/22487638.18619Publicado:
01-10-2021Número:
Vol. 25 Núm. 70 (2021): Octubre - DiciembreSección:
Estudio de casoA Comprehensive Review of Sustainability in Isolated Colombian Microgrids
Una revisión integral de la sostenibilidad en las microrredes aisladas colombianas
Palabras clave:
electrificación rural, dinámica de sistemas, modelo causal, operación de microrredes aisladas, recursos energéticos distribuidos (es).Palabras clave:
system dynamics, rural electrification, causal model, isolated microgrid operation, distributed energy resources (en).Descargas
Referencias
Adrián, C., Flórez, C., Alberto, G., García, M., Felipe, A., & Hernández, P. (2016). Impacto de la penetración de la energía solar fotovoltaica en sistemas de distribución: estudio bajo supuestos del contexto colombiano. Tecnura, 20(50), 85-95. https://doi.org/10.14483/udistrital.jour.tecnura.2016.4.a06
Ahmad, S., Mat Tahar, R., Muhammad-Sukki, F., Munir, A. B., & Abdul Rahim, R. (2016). Application of system dynamics approach in electricity sector modelling: A review. Renewable and Sustainable Energy Reviews, 56, 29-37. https://doi.org/10.1016/j.rser.2015.11.034 DOI: https://doi.org/10.1016/j.rser.2015.11.034
Anderson, C. L., & Cardell, J. B. (2014). A Decision Framework for Optimal Pairing of Wind and Demand Response Resources. IEEE Systems Journal, 8(4), 1104-1111. https://doi.org/10.1109/JSYST.2014.2326898 DOI: https://doi.org/10.1109/JSYST.2014.2326898
Balcells, J., Autonell, J., Barra, V., Brossa, J., Fornieles, F., Garcia, B., & Ros, J. (2010). Eficiencia en el uso de la energía eléctrica. Marcombo - Circutor.
Bedoya-Bedoya, D. E. (2019). Estudio del control de tensión en sistemas de distribución en Colombia con presencia de generación solar fotovoltaica [Master´s thesis].
Berkeley Lab (2020). Microgrids at Berkeley Lab. https://building-microgrid.lbl.gov/grid-planning-and-economics
Blasques, L. C. M., & Pinho, J. T. (2012). Metering systems and demand-side management models applied to hybrid renewable energy systems in micro-grid configuration. Energy Policy, 45, 721-729. https://doi.org/10.1016/j.enpol.2012.03.028 DOI: https://doi.org/10.1016/j.enpol.2012.03.028
Bordons, C., García-Torres, F., & Valverde, L. (2015). Gestión Óptima de la Energía en Microrredes con Generación Renovable. RIAI - Revista Iberoamericana de Automatica e Informatica Industrial, 12(2), 117-132. https://doi.org/10.1016/j.riai.2015.03.001 DOI: https://doi.org/10.1016/j.riai.2015.03.001
Bueno-López, M., González Cely, D. N., & Muñoz Rincón, A. (2020). Análisis de expansión de una microrred en una zona no interconectada. Tecnura, 24(63), 40-56. https://doi.org/10.14483/22487638.15480 DOI: https://doi.org/10.14483/22487638.15480
Bustos-González, J. F., Sepúlveda, A. L., & Triviño Aponte, K. (2014). Zonas no interconectadas eléctricamente en colombia: problemas y perspectiva. Econografos Escuela de Economía, 65. http://www.fce.unal.edu.co/publicaciones/images/documentos-econografos-economia-65.pdf
Camargo, L. A., Arboleda, M. N., & Cardona, E. (2013). Producción de energía limpia en Colombia, la base para un crecimiento sostenible. https://www.xm.com.co/BoletinXM/Documents/MDLColombia_Feb2013.pdf
Cappers, P., Nills, A. D., Goldman, C. D., Wiser, R. H., & Eto, J. E. (2011). Mass market demand response and variable generation integration issues: A scoping study. October. Berkeley Lab. https://doi.org/10.2172/1051046 DOI: https://doi.org/10.2172/1051046
Cappers, P., Mills, A., Goldman, C., Wiser, R., & Eto, J. H. (2012). An assessment of the role mass market demand response could play in contributing to the management of variable generation integration issues. Energy Policy, 48, 420-429. https://doi.org/10.1016/j.enpol.2012.05.040 DOI: https://doi.org/10.1016/j.enpol.2012.05.040
Chmiel, Z., & Bhattacharyya, S. C. (2015). Analysis of off-grid electricity system at Isle of Eigg (Scotland): Lessons for developing countries. Renewable Energy, 81, 578-588. https://doi.org/10.1016/J.RENENE.2015.03.061 DOI: https://doi.org/10.1016/j.renene.2015.03.061
Chowdhury, S., Chowdhury, S. P., & Crossley, P. (2009). Microgrids and active distribution networks. In Microgrids and Active Distribution Networks. IET. https://doi.org/10.1049/pbrn006e DOI: https://doi.org/10.1049/PBRN006E
Dafermos, G., Kotsampopoulos, P., Latoufis, K., Margaris, I. D., Rivela, B., Washima, F. P., Ariza-Montobbio, P., & López, J. (2015). Energía: conocimientos libres, energía distribuida y empoderamiento social para un cambio de matriz energética. Buen Conocer - FLOK Society.
Delgado, A. J. S., Belman, B. L., & Rodríguez-Villalón, O. (2019). Factibilidad técnica y económica de sistemas eléctricos operando bajo el esquema de red inteligente. Jóvenes en la ciencia, 5(1), 3082. https://www.jovenesenlaciencia.ugto.mx/index.php/jovenesenlaciencia/article/view/3082/2544
Departamento Nacional de Planeación, World Bank Group, & Korea Green Growth Partnership (2017). Energy Supply Situation in Colombia. DNP.
Etherden, N., & Bollen, M. H. J. (2011). Increasing the hosting capacity of distribution networks by curtailment of renewable energy resources [Conference presentation]. 2011 IEEE Trondheim PowerTech, Trondheim, Norway. https://doi.org/10.1109/PTC.2011.6019292 DOI: https://doi.org/10.1109/PTC.2011.6019292
Flórez-Acosta, J. H., Tobón-Orozco, D., & Castillo-Quintero, G. A. (2009). ¿Ha sido efectiva la promoción de soluciones energéticas en las zonas no interconectadas (ZNI) en Colombia?: Un análisis de la estructura institucional. Cuadernos de Administración, 22(38), 219-245. http://www.scielo.org.co/pdf/cadm/v22n38/v22n38a11.pdf
Gaona, E. E., Trujillo, C. L., & Guacaneme, J. A. (2015). Rural microgrids and its potential application in Colombia. Renewable and Sustainable Energy Reviews, 51, 125-137. https://doi.org/10.1016/j.rser.2015.04.176 DOI: https://doi.org/10.1016/j.rser.2015.04.176
Garzón-Hidalgo, J. D., & Saavedra-Montes, A. J. (2017). A design methodology of microgrids for non-interconnected zones of Colombia. TecnoLógicas, 20(39), 39-53. https://doi.org/10.22430/22565337.687 DOI: https://doi.org/10.22430/22565337.687
Giral-Ramírez, W. M., Celedón-Flórez, H. J., Galvis-Restrepo, E., & Zona-Ortiz, A. T. (2017). Redes inteligentes en el sistema eléctrico colombiano: Revisión de tema. Tecnura, 21(53), 119-137. https://doi.org/10.14483/22487638.12396 DOI: https://doi.org/10.14483/22487638.12396
Gómez, C. R., Arango-Aramburo, S., & Larsen, E. R. (2017). Construction of a Chilean energy matrix portraying energy source substitution: A system dynamics approach. Journal of Cleaner Production, 162, 903-913. https://doi.org/10.1016/j.jclepro.2017.06.111 DOI: https://doi.org/10.1016/j.jclepro.2017.06.111
González-Montoya, D., Ramos-Paja, C. A., Potosí-Guerrero, B. A., Henao-Bravo, E. E., & Saavedra-Montes, A. J. (2018). Análisis de factibilidad técnico-económico de microrredes que integran celdas de combustible en zonas no interconectadas de Colombia. TecnoLógicas, 21(43), 71-89. https://doi.org/10.22430/22565337.1057 DOI: https://doi.org/10.22430/22565337.1057
Grisales, S. (2017). Análisis de la viabilidad técnico – económica de la inclusión de energía renovable en una de las principales localidades de las ZNI [Master's thesis, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/60190
Iberdrola. (2013). Efectos ambientales de la producción y distribución de energía eléctrica: acciones para su control y corrección. Iberdrola.
Instituto De Planificación Y Promoción De Soluciones Energéticas Para Las Zonas No Interconectadas (IPSE) (2017). Informe Rendición Social De Cuentas 2016-2017. IPSE.
Instituto de Planificación y Promoción de Soluciones Energéticas para las Zonas No Interconectadas (IPSE) (2018). Audiencia Pública de Rendición de Cuentas Vigencia 2017 – 2018. IPSE.
Instituto de Planificación y Promoción de Soluciones Energéticas para las Zonas No Interconectadas (IPSE) (2019). Informe de telemetría-agosto de 2019. IPSE.
Intergovernmental Panel on Climate Change. (2014). Climate Change 2013 - The Physical Science Basis. Cambridge University Press. https://doi.org/10.1017/CBO9781107415324.004 DOI: https://doi.org/10.1017/CBO9781107415324.004
Laaksonen, H., Ishchenko, D., & Oudalov, A. (2014). Adaptive protection and microgrid control design for Hailuoto Island. IEEE Transactions on Smart Grid, 5(3), 1486-1493. https://doi.org/10.1109/TSG.2013.2287672 DOI: https://doi.org/10.1109/TSG.2013.2287672
Law 143 of 1994, Por la cual se establece el régimen para la generación, interconexión, transmisión, distribución y comercialización de electricidad en el territorio nacional, se conceden unas autorizaciones y se dictan otras disposiciones en materia energética. July 11, 1994. D.O. No. 41.434. https://www.minenergia.gov.co/documents/10180/667537/Ley_143_1994.pdf
Law 1715 of 2014. Por medio de la cual se regula la integración de las energías renovables al sistema energético nacional. May 13, 2014. D.O. 49.150. http://www.secretariasenado.gov.co/senado/basedoc/ley_1715_2014.html
Li, X., Booth, S., Esterly, S., Baring-Gould, I., Clowes, J., Weston, P., Shukla, P., Thacker, J., & Jacquiau-Chamski, A. (2020). A product of the usaid-nrel partnership performance monitoring of african micro-grids: good practices and operational data energy 4 impact (January). USAID-NREL. https://www.nrel.gov/docs/fy20osti/71767.pdf. https://doi.org/10.2172/1051046. DOI: https://doi.org/10.2172/1597244
Liévano Martínez, F., & Londoño, J. E. (2012). El pensamiento sistémico como herramienta metodológica para la resolución de problemas. Soluciones de Postgrado EIA, 8, 43-65. https://revistas.eia.edu.co/index.php/SDP/article/view/354
López-García D., Arango-Manrique A., C.-Q. S. X. (2018). The Impact of Residential Demand Response in the Active Power Balance of an Isolated Microgrid: A Case of Study. In J. Figueroa-García, E. López-Santana, J. Rodriguez-Molano (Eds.) Applied Computer Sciences in Engineering. WEA 2018. Communications in Computer and Information Science (vol. 915, pp. 535-547). Springer. http://dx.doi.org/10.1007/978-3-030-00350-0_44 DOI: https://doi.org/10.1007/978-3-030-00350-0_44
López-García, D., Arango-Manrique, A., & Carvajal-Quintero, S. X. (2018). Integration of distributed energy resources in isolated microgrids: the Colombian paradigm. TecnoLógicas, 21(42), 13-30. https://doi.org/10.22430/22565337.774 DOI: https://doi.org/10.22430/22565337.774
López-García, D. (2018). Caracterización de un esquema remunerativo para la participación de la demanda en la prestación del servicio complementario de control de frecuencia en el mercado eléctrico colombiano [Master's thesis, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/76690
Manrique, A. A. (2017). Evaluación Técnica y de Mercado de la Operación de una Microrred en Modo Aislado dentro de un Sistema Eléctrico de Potencia con Ambiente Desregulado [Doctoral thesis, Universidad Nacional de Colombia]. https://repositorio.unal.edu.co/handle/unal/60939
Morales-Ramírez, D., & Alvarado-Lagunas, E. (2014). Análisis del consumo de energía eléctrica domiciliaria en Tampico, Tamaulipas. CienciaUAT, 8(2), 62-67. http://doi.org/10.29059/cienciauat.v8i2.290 DOI: https://doi.org/10.29059/cienciauat.v8i2.290
North American Electric Reliability Corporation (2009). Accommodating High Levels of Variable Generation. NERC.
Núñez, O., Ortiz-Villalba, D., & Palma-Behnke, R. (2013). Microrredes en la red eléctrica del futuro - caso Huatacondo. Ciencia y Tecnología: Revista de La Universidad de Costa Rica, 29(2), 1-16. https://revistas.ucr.ac.cr/index.php/cienciaytecnologia/article/view/15214
Plain, N., Hingray, B., & Mathy, S. (2019). Accounting for low solar resource days to size 100% solar microgrids power systems in Africa. Renewable Energy, 131, 448-458. https://doi.org/10.1016/J.RENENE.2018.07.036 DOI: https://doi.org/10.1016/j.renene.2018.07.036
Rese, L. (2012). Modelagem, análise de estabilidade e controle de microrredes de energia elétrica [Master's thesis, Universidade Federal de Santa Catarina].
Rodríguez, R., Osma, G., & Ordóñez, G. (2017). Retos de la planificación energética de micro-redes en regiones rurales remotas con cargas dispersas Energy planning challenges of microgrid in remote rural regions with scattered loads. IX Simposio Internacional de La Calidad de La Energía Eléctrica - SICEL 2017.
Rural Coordination Centre of BC (RCCbc) (n.d.). Hartley Bay. https://rccbc.ca/hartley-bay/
Sistema de Gestión de Información y Conocimiento en Fuentes No Convencionales de Energía Renovable en Colombia (SGI&C - FNCER). (2018). Sistemas Fotovoltaicos aislados en el municipio de Paratebueno - Cundinamarca. SGI&C.
Sterman, J. (2000). Business Dynamics: Systems Thinking and Modeling for a Complex World. McGraw-Hill Education
Unidad de Planeación Minero Energética (UPME) (2015). Integración de las energías renovables no convencionales en Colombia. Ministerio de Minas y Energía.
Valencia-López, D., Carvajal Quintero, S., & Pineda-Agudelo, J. (2017). Design of demand management programs for the efficient use of electricity by industrial users. Ingeniería y Competitividad, 19(1), 207-218. https://doi.org/10.25100/iyc.v19i1.2144 DOI: https://doi.org/10.25100/iyc.v19i1.2144
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Esta licencia permite a otros remezclar, adaptar y desarrollar su trabajo incluso con fines comerciales, siempre que le den crédito y concedan licencias para sus nuevas creaciones bajo los mismos términos. Esta licencia a menudo se compara con las licencias de software libre y de código abierto “copyleft”. Todos los trabajos nuevos basados en el tuyo tendrán la misma licencia, por lo que cualquier derivado también permitirá el uso comercial. Esta es la licencia utilizada por Wikipedia y se recomienda para materiales que se beneficiarían al incorporar contenido de Wikipedia y proyectos con licencias similares.