DOI:

https://doi.org/10.14483/22487638.18806

Publicado:

2022-09-25

Número:

Vol. 26 Núm. 74 (2022): Octubre - Diciembre

Sección:

Investigación

Parameter Determination of Coupled and Decoupled Admittance Matrix Methods of the Norton Equivalent Model for an Air Extractor

Determinación de parámetros de métodos de matriz de admitancia acoplada y desacoplada del modelo Equivalente Norton para extractor de aire

Autores/as

Palabras clave:

harmonic distortion, load modeling, Norton model, single-phase motor, NRMSE (en).

Palabras clave:

distorsión armónica, modelado de cargas, modelo de Norton, motor monofásico, NRMSE (es).

Descargas

Resumen (en)

Context: Studies carried out in low voltage networks have explored the modeling of linear single-phase loads (such as motors) and non-linear ones (such as those based on power electronics). However, induction motors exhibit non-linear characteristics between voltage and current due to the saturation of their magnetic parts. Therefore, it is necessary to study induction motors in the frequency domain with a model that allows reviewing the characteristic nonlinearity of their voltage-current interaction.

Methodology: This article presents the frequency domain modeling of a single-phase induction motor used as a silent air extractor (127 V, 60 Hz, 66 W), which presents a capacitive behavior (fp = 0,93 in leading) and harmonic distortion due to a third-order component (7,0%) when fed with a pure sinusoidal voltage of 127 V.

Results: This work establishes the parameters of two approaches to the Norton equivalent model (coupled and decoupled admittance matrix) which are used to estimate the distorted current signal and the values ​​of consumed active and non-active power. The results show comparisons errors of P, Q, THDi, and NRMSE indices of less than 7, 4, 14, and 3%, respectively.

Conclusions: The parameters of the Norton equivalent model estimated for the single-phase induction motor allow calculating the current signal with a high degree of precision. This signal exhibits nonlinear characteristics and a capacitive behavior due to the permanent presence of a capacitor aiding the start and operation of the engine.

Resumen (es)

Contexto: Estudios realizados en redes de baja tensión han explorado el modelado de cargas monofásicas lineales (como motores) y no lineales (como dispositivos basados en electrónica de potencia). No obstante, los motores de inducción presentan características no lineales entre tensión y corriente debido a la saturación de sus partes magnéticas. Por ello es necesario estudiar el motor de inducción en el dominio de la frecuencia con un modelo que permita revisar la no linealidad característica de su interacción tensión-corriente.

Metodología: Este artículo presenta el modelado en el dominio de la frecuencia de un motor de inducción monofásico usado como extractor de aire silencioso (127 V, 60 Hz, 66 W), el cual presenta un comportamiento capacitivo (fp = 0,93 en adelanto) y distorsión armónica debido a una componente del tercer orden (7,0 %) al ser alimentado con una tensión sinusoidal pura de 127 V.

Resultados: Este trabajo establece los parámetros de dos enfoques del modelo equivalente de Norton (matriz de admitancias acoplada y desacoplada) usados para estimar la señal de corriente distorsionada y los valores de potencia activa y no activa consumidas. Los resultados muestran errores de comparación de P, Q, índices THDi y NRMSE menores al 7, 4, 14 y 3% respectivamente.

Conclusiones: Los parámetros del modelo equivalente de Norton estimados para el motor de inducción monofásico permiten calcular con un alto grado de precisión la señal de corriente, la cual presenta características no lineales y un comportamiento capacitivo por la presencia permanente de un capacitor que ayuda al arranque y funcionamiento del motor.

Biografía del autor/a

Alejandra Martínez Peñaloza, Universidad Industrial de Santander

Ingeniero Eléctrico, estudiante de Maestría y Doctorado en Ingeniería Eléctrica de la Universidad Industrial de Santander. Bucaramanga

German Osma-Pinto, Universidad Industrial de Santander

Ingeniería Eléctrica e Industrial, Maestría en Ingeniería Eléctrica, Doctorado en Ingeniería. Profesor asistente e investigador de la Universidad Industrial de Santander.

Gabriel Ordóñez-Plata, Universidad Industrial de Santander

Ingeniero Eléctrico, Doctor en Ingeniería Industrial. Profesor asociado e investigador de la Universidad Industrial de Santander. Bucaramanga,

Referencias

Arif, A., Wang, Z., Wang, J., Mather, B., Bashualdo, H., & Zhao, D. (2018). Load Modeling- A Review. IEEE Transactions on Smart Grid, 9(6), 5986-5999. https://doi.org/10.1109/TSG.2017.2700436

Blanco, A. M., Stiegler, R., & Meyer, J. (2013, June 16-20). Power quality disturbances caused by modern lighting equipment (CFL and LED) [Conference presentation]. 2013 IEEE Grenoble Conference, Grenoble, France. https://doi.org/10.1109/PTC.2013.6652431

Blanco, A. M., Yanchenko, S., Meyer, J., & Schegner, P. (2015). Impact of supply voltage distortion on the current harmonic emission of non-linear loads. Dyna, 82(192), 150-159. https://doi.org/10.15446/dyna.v82n192.48591

Bosovic, A., Renner, H., Abart, A., Traxler, E., Meyer, J., Domagk, M., & Music, M. (2016). Validation of aggregated harmonic current source models based on different customer type configurations. In IEEE (Eds.), 2016 Electric Power Quality and Supply Reliability, PQ 2016 (pp. 77-84). IEEE. https://doi.org/10.1109/PQ.2016.7724093

Brunoro, M., Encarnação, L. F., & Fardin, J. F. (2017). Modeling of loads dependent on harmonic voltages. Electric Power Systems Research, 152, 367-376. https://doi.org/10.1016/j.epsr.2017.07.030

Busatto, T., Ravidran, V., Larsson, A., Ronnberg, S. K., Bollen, M. H. J., & Meyer, J. (2019, June 12-15). Experimental harmonic analysis of the impact of LED lamps on PV inverters performance [Conference presentation]. 2019 Electric Power Quality and Supply Reliability Conference and 2019 Symposium on Electrical Engineering and Mechatronics, Kärdla, Estonia. https://doi.org/10.1109/PQ.2019.8818231

Caicedo, J. E., Romero, A. A., & Zini, H. C. (2017a). Frequency domain modeling of nonlinear loads, considering harmonic interaction [Conference presentation]. 2017 3rd IEEE Workshop on Power Electronics and Power Quality Applications, Bogotá, Colombia. https://doi.org/10.1109/PEPQA.2017.7981641

Caicedo, J. E., Romero, A. A., & Zini, H. C. (2017b). Assessment of the harmonic distortion in residential distribution networks: literature review. Ingeniería e Investigación, 37(3), 72-84. https://doi.org/10.15446/ing.investig.v37n3.64913

Cale, J., Lute, C., Ross, G., & Othee, A. (2020). Characterization procedure for unsymmetrical single-phase capacitor-start induction machines. IEEE Open Access Journal of Power and Energy, 8, 2-10. https://doi.org/10.1109/OAJPE.2020.3034210

Chang, G., Hatziadoniu, C., Xu, W., Ribeiro, P., Burch, R., Grady, W. M., Halpin, M., Liu, Y., Ranade, S., Ruthman, D., Watson, N., Ortmeyer, T., Wikston, J., Medina, A., Testa, A., Gardinier, R., Dinavahi, V., Acram, F., & Lehn, P. (2004). Modeling devices with nonlinear voltage-current characteristics for harmonic studies. IEEE Transactions on Power Delivery, 19(4), 1802-1811. https://doi.org/10.1109/TPWRD.2004.835429

Chasiotis, I. D., & Karnavas, Y. L. (2020). On the design and manufacturing of small single phase induction motors toward super premium efficiency standards. In IEEE (Eds.), Proceedings - 2020 International Conference on Electrical Machines, ICEM 2020 (pp. 2321-2327). IEEE. https://doi.org/10.1109/ICEM49940.2020.9270791

Dghim, H., El-Naggar, A., & Erlich, I. (2018, May 13-16). Harmonic distortion in low voltage grid with grid-connected photovoltaic [Conference presentation]. 2018 18th International Conference on Harmonics and Quality of Power, Ljubljana, Slovenia. https://doi.org/10.1109/ICHQP.2018.8378851

Fölting, A. S., Myrzik, J. M. A., Wiesner, T., & Jendernalik, L. (2014, August 18-22). Practical implementation of the coupled norton approach for nonlinear harmonic models [Conference presentation]. 2014 Power Systems Computation Conference, Wroclaw, Poland. https://doi.org/10.1109/PSCC.2014.7038372

Ge, X., & Liu, Y. (2020). A dynamic parameter model of harmonic source networks. IEEE Transactions on Power Delivery, 35(3), 1093-1101. https://doi.org/10.1109/TPWRD.2019.2932433

Guo, Z., Al-Shibli, N., Xiao, X., Djokic, S., Collin, A., Langella, R., Testa, A., Papic, I., Blanco, A., & Meyer, J. (2019). Aggregate harmonic load models of residential customers. Part 2: Frequency-domain models [Conference presentation]. 2019 IEEE PES Innovative Smart Grid Technologies Europe Bucharest, Romania. https://doi.org/10.1109/ISGTEurope.2019.8905746

Hasan, M. A., & Parida, S. K. (2018). Modeling and analysis of single phase induction motor as a dynamic load in inverter dominated microgrid system [Conference presentation]. 2017 7th International Conference on Power Systems, ICPS 2017, Pune, India. https://doi.org/10.1109/ICPES.2017.8387367

Marulanda, J. J., Escobar, A., & Alzate, A. (2017). Estudio comparativo de cinco estrategias de compensación de armónicos en filtros activos de potencia. Revista Tecnura, 21(52), 15-31. http://dx.doi.org/10.14483/udistrital.jour.tecnura.2017.2.a01 https://doi.org/10.14483/udistrital.jour.tecnura.2017.2.a01

Meyer, J., Müller, S., Schegner, P., Djokic, S. Z., Collin, A. J., & Xu, X. (2016, June 20-24). Comparison of methods for modelling electric vehicle chargers for harmonic studies [Conference presentation]. 19th Power Systems Computation Conference, Genoa, Italy. https://doi.org/10.1109/PSCC.2016.7540993 https://doi.org/10.1109/PSCC.2016.7540993

Moreno-Cañón, J. C., Aguirre-Buitrago, C., & Noguera-Vega, L. A. (2014). Modelo para identificación de cargas perturbadoras de la calidad de potencia eléctrica en cuanto al fenómeno armónico en una s/e. Revista Tecnura, SE1, 65-79. https://doi.org/10.14483/udistrital.jour.tecnura.2014.SE1.a05

Nassif, A. B., Yong, J., & Xu, W. (2010). Measurement-based approach for constructing harmonic models of electronic home appliances. IET Generation, Transmission & Distribution, 4(3), 363. https://doi.org/10.1049/iet-gtd.2009.0240

Pérez-Londoño, S. M., Rodríguez-García, L. F., & Mora-Flórez, J. J. (2015). Obtención de modelos de carga compuestos en sistemas de potencia para análisis dinámico: revisión y aplicación. Revista Tecnura, 19(44), 171. https://doi.org/10.14483/udistrital.jour.tecnura.2015.2.a13

Roy, J., Jain, A. K., & Mather, B. (2020, February, 6-7). Impacts of experimentally obtained harmonic spectrums of residential appliances on distribution feeder [Conference presentation]. 2020 IEEE Texas Power and Energy Conference, College Station, TX, USA. https://doi.org/10.1109/TPEC48276.2020.9042573

Senra, R., Boaventura, W. C., & Mendes, E. M. A. M. (2017). Assessment of the harmonic currents generated by single-phase nonlinear loads. Electric Power Systems Research, 147, 272-279. https://doi.org/10.1016/j.epsr.2017.02.028

Sharma, U., & Singh, B. (2021). Design and development of energy efficient single phase induction motor for ceiling fan using Taguchi’s orthogonal arrays. IEEE Transactions on Industry Applications, 57(4), 3562-3572. https://doi.org/10.1109/TIA.2021.3072020

Soni, M. K., & Soni, N. (2014). Review of causes and effect of harmonics on power system. International Journal of Science, Engineering and Technology Research, 3(2), 214-220.

Tavukcu, E., Müller, S., & Meyer, J. (2019). Assessment of the performance of frequency domain models based on different reference points for linearization. Renewable Energy and Power Quality Journal, 17(17), 435-440. https://doi.org/10.24084/repqj17.337

Xiao, X., Collin, A. J., Djokic, S. Z., Yanchenko, S., Möller, F., Meyer, J., Langella, R., & Testa, A. (2017). Analysis and modelling of power-dependent harmonic characteristics of modern PE devices in LV networks. IEEE Transactions on Power Delivery, 32(2), 1014-1023. https://doi.org/10.1109/TPWRD.2016.2574566

Yao, K., & Xiao, H. (2020, November 1-4). Analysis of frequency control system in single-phase asynchronous motor [Conference presentation]. 2020 IEEE 1st China International Youth Conference on Electrical Engineering, Wuhan, China. https://doi.org/10.1109/CIYCEE49808.2020.9332777

Cómo citar

APA

Martínez Peñaloza, A., Osma-Pinto, G., & Ordóñez-Plata, G. . (2022). Parameter Determination of Coupled and Decoupled Admittance Matrix Methods of the Norton Equivalent Model for an Air Extractor. Tecnura, 26(74), 17–34. https://doi.org/10.14483/22487638.18806

ACM

[1]
Martínez Peñaloza, A., Osma-Pinto, G. y Ordóñez-Plata, G. 2022. Parameter Determination of Coupled and Decoupled Admittance Matrix Methods of the Norton Equivalent Model for an Air Extractor. Tecnura. 26, 74 (sep. 2022), 17–34. DOI:https://doi.org/10.14483/22487638.18806.

ACS

(1)
Martínez Peñaloza, A.; Osma-Pinto, G.; Ordóñez-Plata, G. . Parameter Determination of Coupled and Decoupled Admittance Matrix Methods of the Norton Equivalent Model for an Air Extractor. Tecnura 2022, 26, 17-34.

ABNT

MARTÍNEZ PEÑALOZA, A.; OSMA-PINTO, G.; ORDÓÑEZ-PLATA, G. . Parameter Determination of Coupled and Decoupled Admittance Matrix Methods of the Norton Equivalent Model for an Air Extractor. Tecnura, [S. l.], v. 26, n. 74, p. 17–34, 2022. DOI: 10.14483/22487638.18806. Disponível em: https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/18806. Acesso em: 26 sep. 2022.

Chicago

Martínez Peñaloza, Alejandra, German Osma-Pinto, y Gabriel Ordóñez-Plata. 2022. «Parameter Determination of Coupled and Decoupled Admittance Matrix Methods of the Norton Equivalent Model for an Air Extractor». Tecnura 26 (74):17-34. https://doi.org/10.14483/22487638.18806.

Harvard

Martínez Peñaloza, A., Osma-Pinto, G. y Ordóñez-Plata, G. . (2022) «Parameter Determination of Coupled and Decoupled Admittance Matrix Methods of the Norton Equivalent Model for an Air Extractor», Tecnura, 26(74), pp. 17–34. doi: 10.14483/22487638.18806.

IEEE

[1]
A. Martínez Peñaloza, G. Osma-Pinto, y G. . Ordóñez-Plata, «Parameter Determination of Coupled and Decoupled Admittance Matrix Methods of the Norton Equivalent Model for an Air Extractor», Tecnura, vol. 26, n.º 74, pp. 17–34, sep. 2022.

MLA

Martínez Peñaloza, A., G. Osma-Pinto, y G. . Ordóñez-Plata. «Parameter Determination of Coupled and Decoupled Admittance Matrix Methods of the Norton Equivalent Model for an Air Extractor». Tecnura, vol. 26, n.º 74, septiembre de 2022, pp. 17-34, doi:10.14483/22487638.18806.

Turabian

Martínez Peñaloza, Alejandra, German Osma-Pinto, y Gabriel Ordóñez-Plata. «Parameter Determination of Coupled and Decoupled Admittance Matrix Methods of the Norton Equivalent Model for an Air Extractor». Tecnura 26, no. 74 (septiembre 25, 2022): 17–34. Accedido septiembre 26, 2022. https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/18806.

Vancouver

1.
Martínez Peñaloza A, Osma-Pinto G, Ordóñez-Plata G. Parameter Determination of Coupled and Decoupled Admittance Matrix Methods of the Norton Equivalent Model for an Air Extractor. Tecnura [Internet]. 25 de septiembre de 2022 [citado 26 de septiembre de 2022];26(74):17-34. Disponible en: https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/18806

Descargar cita

Visitas

2

Dimensions


PlumX


Descargas

Los datos de descargas todavía no están disponibles.