
DOI:
https://doi.org/10.14483/22487638.20418Publicado:
01-09-2024Número:
Vol. 28 Núm. 81 (2024): Julio - SeptiembreSección:
InvestigaciónEfecto del tamaño de bloques en la resistencia al corte de suelos con bloques (bimsoils) de bajas proporciones volumétricas
Blocks size effect on the shear strength of bimsoils with low volumetric blocks proportion
Palabras clave:
bimsoils, blocks size, FEM, volumetric blocks proportion (en).Palabras clave:
bimsoils, tamaño de bloques, ensayo triaxial drenado, elementos finitos, proporción volumétrica de bloques (es).Descargas
Resumen (es)
El término bimsoils se utiliza para definir la inclusión de bloques rígidos embebidos en una matriz de suelo débil,
donde la relación de rígidez entre ambos materiales es mayor a dos. La investigación en bimsoils se concentra
en la determinación de los parámetros de resistencia en función de la proporción volumétrica de bloques (VBP).
Sin embargo, la resistencia de bimsoils depende de otras variables, entre ellas el tamaño de los bloques. Aunque
algunos autores indican que este no influencia la resistencia, otros concluyen que la resistencia es mayor cuando la distribución de tamaños es bien gradada y el tamaño máximo del bloque es mayor. Este estudio presenta un análisis numérico de la influencia del tamaño del bloque y la V BP en los parámetros de resistencia de bimsoils, a partir de ensayos triaxiales drenados modelados en FEM. El tamaño de bloque es constante en todo el espécimen y corresponde a una fracción del diámetro de la muestra (D) que varía de 0.1 a 0.2. Se observa una mayor resistencia al corte en los bimsoils con valores elevados de VBP y tamaño de bloques entre 0.12D y 0.15D. Esto se refleja en los parámetros de resistencia. La influencia del tamaño se observa para distintas VBP y cuando los bloques tienen una distribución espacial uniforme y columnar. El aumento de la V BP genera el incremento en la anisotropía de la magnitud de los esfuerzos principales en la muestra y los tamaños de bloques 0.12D y 0.15D generan una mayor heterogeneidad de los esfuerzos de corte reflejado en la magnitud y propagación de los esfuerzos en la muestra.
Resumen (en)
The term bimsoils is used to define the inclusion of rigid blocks embedded in a weak soil matrix, where the stiffness
ratio between both materials is greater than two. Research on bimsoils primarily focuses on determining shear
strength parameters based on the volumetric proportion of blocks (V BP). However, the shear strength of bimsoils is
also influenced by other variables, including the size of the blocks. Although some authors indicate that size has no
influence on shear strength, others conclude that strength is greater when the size distribution is well-graded, and
the maximum block size is greater. This study analyses the influence of block size and V BP on bimsoils strength
parameters, from drained triaxial tests modeled in ABAQUS. The block size is unique in the entire specimen and corresponds to a fraction of the diameter of the sample (D) that varies from 0.1 to 0.2. Shear strength is higher for
bimsoils with higher V BP and block size between 0.12D and 0.15D and it is reflected in the strength parameters.
The influence of size occurs for different V BP and when the blocks have a uniform and columnar location. The
increment in the V BP generates the increase in the anisotropy of the magnitude of the principal stresses in the
sample and the block sizes 0.12D and 0.15D generate a greater heterogeneity of the shear stresses reflected in the
magnitude and propagation of the stresses in the sample.
Referencias
Afifipour, M. and Moarefvand, P. (2014). Mechanical behavior of bimrocks having high rock block proportion. International Journal of Rock Mechanics and Mining Sciences, *65*, 40–48.
Avşar, E. (2020). Contribution of fractal dimension theory into the uniaxial compressive strength prediction of a volcanic welded bimrock. Bull. Eng. Geol. and the Envir., *79*(7), 3605–3619.
Avşar, E. (2021). An experimental investigation of shear strength behavior of a welded bimrock by meso-scale direct shear tests. Eng. Geology, *294*, 106321.
Barton, N. (2013). Shear strength criteria for rock, rock joints, rockfill and rock masses: Problems and some solutions. Journal of Rock Mechanics and Geotechnical Engineering, *5*(4), 249–261.
Cao, Z., Chen, J., Cai, Y., Gu, C., and Wang, J. (2017). Effects of moisture content on the cyclic behavior of crushed tuff aggregates by large-scale tri-axial test. Soil Dyn. Earthqu. Eng., *95*, 1–8.
Cen, D., Huang, D., and Ren, F. (2017). Shear deformation and strength of the interphase between the soil–rock mixture and the benched bedrock slope surface. Acta Geotech., *12*, 391–413.
Chu, B., Pan, J., and Chang, K. (1996). Field geotechnical engineering properties of gravel formations in western taiwan. Sino-Geotechnics, *55*, 47–58.
Chu, B.-L., Jou, Y.-W., and Weng, M.-C. (2010). A constitutive model for gravelly soils considering shear-induced volumetric deformation. Can. Geotech. J., *47*(6), 662–673.
Coli, N., Berry, P., and Boldini, D. (2011). In situ non-conventional shear tests for the mechanical characterisation of a bimrock. International Journal of Rock Mechanics and Mining Sciences, *48*(1), 95–102.
Coli, N., Berry, P., Boldini, D., and Bruno, R. (2009). Investigation of block geometrical properties of the shale-limestone chaotic complex bimrock of the santa barbara open pit mine (italy). In Rock Engineering in Difficult Conditions, 3rd Canada–US Rock Mechanics Symposium, Toronto (CA), pages 9–14.
Donaghe, R. and Torrey, V. (1979). Scalping and replacement effects on strength parameters of earth-rock mixtures. In Proc. Conf. on Design Parameters in Geotechnical Engineering, volume 2, pages 29–34.
Gao, W., Iqbal, J., and Hu, R. (2021). Investigation of geomechanical characterization and size effect of soil-rock mixture: a case study. Bull. Eng. Geol. and the Envir., *80*(8), 6263–6274.
Gong, J. and Liu, J. (2015). Analysis on the mechanical behaviors of soil-rock mixtures using discrete element method. Procedia Engineering, *102*, 1783–1792.
Hibbitt, Karlsson, and Soreson (2001). ABAQUS/Standard User's Manual. Hibbit, Karlsson & Sorensen, Inc., United States (Pawtucket).
Holtz, W. (1960). Discussion of testing equipment, techniques and errors. In Research Conference on Shear Strength of Cohesive Soils, pages 997–1002. ASCE.
Holtz, W. and Gibbs, H. J. (1956). Triaxial shear tests on pervious gravelly soils. Journal of the Soil Mechanics and Foundations Division, *82*(1), 1–22.
Hu, Y., Sun, S., Sun, Y., Wei, J., Le, H., Li, K., and Zhao, B. (2024). An experimental investigation of the effects of block proportion on bimrocks, considering different block-to-matrix strength ratios. Materials, *17*(5), 1114.
Iannacchione, A. T. and Vallejo, L. E. (2000). Shear strength evaluation of clay-rock mixtures. Geotechnical Special Publication, pages 209–223.
Irfan, T. and Tang, K. (1993). Effect of the coarse fractions on the shear strength of colluvium. Geotechnical Engineering Office, Civil Engineering Department.
Ishikawa, T. and Miura, S. (2015). Influence of moving wheel loads on mechanical behavior of submerged granular roadbed. Soils Found., *55*(2), 242–257.
Jin, L., Zeng, Y., Xia, L., and Ye, Y. (2017). Experimental and numerical investigation of mechanical behaviors of cemented soil–rock mixture. Geotechnical and Geological Engineering, *35*, 337–354.
Kahraman, S. and Alber, M. (2006). Estimating unconfined compressive strength and elastic modulus of a fault breccia mixture of weak blocks and strong matrix. International journal of rock mechanics and mining sciences, *43*(8), 1277–1287.
Kahraman, S., Alber, M., Fener, M., and Gunaydin, O. (2008). Evaluating the geomechanical properties of misis fault breccia (turkey). International Journal of Rock Mechanics and Mining Sciences, *45*(8), 1469–1479.
Kahraman, S., Alber, M., Fener, M., and Gunaydin, O. (2010). The usability of cerchar abrasivity index for the prediction of ucs and e of misis fault breccia: regression and artificial neural networks analysis. Expert Systems with Applications, *37*(12), 8750–8756.
Kalender, A., Sonmez, H., Medley, E., Tunusluoglu, C., and Kasapoglu, K. (2014). An approach to predicting the overall strengths of unwelded bimrocks and bimsoils. Engineering Geology, *183*, 65–79.
Lade, P. V. and Wasif, U. (1988). Effects of height-to-diameter ratio in triaxial specimens on the behavior of cross-anisotropic sand. In Advanced triaxial testing of soil and rock. ASTM International.
Liang, S., Xiao, X., and Feng, D. (2023). Study on large-scale direct shear test on soil–rock mixture in an immersion state under water. International Journal of Geomechanics, *23*(2), 04022294.
Lindquist, E. and Goodman, R. (1994). Strength and deformation properties of a physical model melange. In 1st North American Rock Mechanics Symposium. American Rock Mechanics Association.
Mahdevari, S. and Moarefvand, P. (2018). Experimental investigation of fractal dimension effect on deformation modulus of an artificial bimrock. Bull. Eng. Geol. and the Envir., *77*, 1729–1737.
Medley, E. (1994). Using stereological methods to estimate the volumetric proportions of blocks in melanges and similar block-in-matrix rocks (bimrocks). In 7th International IAEG Congress, Lisboa, Portugal, pages 1031–1040.
Medley, E. (2004). Observations on tortuous failure surfaces in bimrocks. Felsbau, J. of Engineering Geology, Geomechanics and Tunnelling, *22*, 35–43.
Medley, E. and Goodman, R. E. (1994). Estimating the block volumetric proportions of melanges and similar block-in-matrix rocks (bimrocks). In 1st North American Rock Mechanics Symposium. American Rock Mechanics Association.
Medley, E. V. and Lindquist, E. S. (1995). The engineering significance of the scale-independence of some franciscan melanges in california, usa. In The 35th US Symposium on Rock Mechanics (USRMS). American Rock Mechanics Association.
Medley, E. W. (2002a). Estimating block size distributions of melanges and similar block-in-matrix rocks (bimrocks). In Proc. 5th North American Rock Mechanics Symposium, Toronto, Canada.
Medley, E. W. (2002b). Estimating block size distributions of melanges and similar block-in-matrix rocks (bimrocks). In Proc. 5th North American Rock Mechanics Symposium, Toronto, Canada.
Medley, E. W. and Rehermann, P. F. S. (2004). Characterization of bimrocks (rock/soil mixtures) with application to slope stability problems.
Medley, E. W. and Zekkos, D. (2011). Geopractitioner approaches to working with antisocial mélanges. Geological Society of America Special Papers, *480*, 261–277.
Miller, E. A. and Sowers, G. F. (1958). The strength characteristics of soil-aggregate mixtures & discussion. Highway Research Board Bulletin, *14*(183).
Patwardhan, A., Rao, J., and Gaidhane, R. (1970). Interlocking effects and shearing resistance of boulders and large size particles in a matrix of fines on the basis of large scale direct shear tests. In Proceedings of the 2nd Southeast Asian Conference on Soil Mechanics, Singapore. Southeast Asian Geotechnical Society, Pathumthani, Thailand, pages 265–273.
Ramos-Cañón, A. M., Castro-Malaver, L. C., Padilla-Bello, N. V., and Vega-Posada, C. A. (2020). Incertidumbre en la determinación del porcentaje volumétrico de bloques de bimrocks/bimsoil a partir de información unidimensional. Boletín de Geología, *42*(1), 69–80.
Rathee, R. (1981). Shear strength of granular soils and its prediction by modeling techniques. Journal of the Institution of Engineers (India), pages 64–70.
Raymond, L. A. (1984). Melanges: Their nature, origin, and significance, volume 198. Geological Society of America.
Sachan, A. and Penumadu, D. (2007). Effect of microfabric on shear behavior of kaolin clay. Journal of geotechnical and geoenvironmental engineering, *133*(3), 306–318.
Sharafisafa, M., Aliabadian, Z., Sato, A., and Shen, L. (2024). Effect of strain rate on the failure of bimrocks using the combined finite-discrete element method. Computers and Geotechnics, *176*, 106712.
Sheikhpourkhani, A., Bahaaddini, M., Oh, J., and Masoumi, H. (2024). Numerical study of the mechanical behaviour of unwelded block in matrix rocks under direct shearing. Bulletin of Engineering Geology and the Environment, *83*(1), 22.
Sonmez, H., Altinsoy, H., Gokceoglu, C., and Medley, E. (2006). Considerations in developing an empirical strength criterion for bimrocks. In Proc. 4th Asian Rock Mechanics Symposium, Nov 6-10 2006, Singapore.
Wang, S., Zhu, Y., Ma, W., Wang, Z., and Li, G. (2021). Effects of rock block content and confining pressure on dynamic characteristics of soil-rock mixtures. Eng. Geology, *280*, 105963.
Wang, Y., Que, J., Wang, C., and Li, C. (2018). Three-dimensional observations of mesostructural changes in bimsoil using x-ray computed tomography (ct) under triaxial compression. Constr Build Mater., *190*, 773–786.
Wen-Jie, X., Qiang, X., and Rui-Lin, H. (2011). Study on the shear strength of soil–rock mixture by large scale direct shear test. Int. J. for Rock Mech. and Mining Sciences, *48*(8), 1235–1247.
Zhang, H.-Y., Xu, W.-J., and Yu, Y.-Z. (2016a). Triaxial tests of soil–rock mixtures with different rock block distributions. Soils Found., *56*(1), 44–56.
Zhang, L. (2016). Engineering Properties of Rocks. Elsevier Science.
Zhang, Z.-L., Xu, W.-J., Xia, W., and Zhang, H.-Y. (2016b). Large-scale in-situ test for mechanical characterization of soil–rock mixture used in an embankment dam. Int. J. for Rock Mech. and Mining Sciences, *86*, 317–322.
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2024 Denisse Campos Muñoz, Alfonso Mariano Ramos Cañón, Luis Felipe Prada Sarmiento

Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.
Esta licencia permite a otros remezclar, adaptar y desarrollar su trabajo incluso con fines comerciales, siempre que le den crédito y concedan licencias para sus nuevas creaciones bajo los mismos términos. Esta licencia a menudo se compara con las licencias de software libre y de código abierto “copyleft”. Todos los trabajos nuevos basados en el tuyo tendrán la misma licencia, por lo que cualquier derivado también permitirá el uso comercial. Esta es la licencia utilizada por Wikipedia y se recomienda para materiales que se beneficiarían al incorporar contenido de Wikipedia y proyectos con licencias similares.