DOI:
https://doi.org/10.14483/22487638.20582Publicado:
31-03-2025Número:
Vol. 29 Núm. 83 (2025): Enero - MarzoSección:
InvestigaciónApplication of the arithmetic optimization algorithm to the phase-balancing problem in three-phase asymmetric distribution networks
Aplicación del algoritmo de optimización aritmética al problema de balance de fases en sistemas de distribución asimétricos
Palabras clave:
phase-balancing, three-phase power flow, load connection, arithmetic optimization algorithm, power loss (en).Palabras clave:
balance de fases, flujo de potencia trifásico, conexión de cargas, algoritmo de optimización aritmética, pérdidas de potencia (es).Descargas
Resumen (en)
Objective: This article presents the application of the arithmetic optimization algorithm (AOA) to the phase balancing problem in three-phase asymmetric distribution systems. The algorithm is implemented in MATLAB and its performance is compared with the losses from the results of the networks presented in specialized literature using other optimization algorithms. The objective is to determine the optimal load connections at each node to reduce the active power losses (the objective function).
Methodology: Based on the specialized literature, the IEEE standard test networks with 25 and 37 nodes are selected. A master-slave strategy is proposed, where the iterative swept power flow is programmed in its three-phase version (slave stage). Power losses are characterized under a standard phase connection condition on the load side. The arithmetic optimization algorithm (AOA) (master stage) is then programmed and the most optimal connections to be implemented are defined. These are subsequently compared and analyzed with other methodologies and with the base case.
Results: Using the selected IEEE test systems of 25 and 37 nodes from the specialized literature, the proposed master-slave methodology, incorporating AOA and the iterative sweep power flow in its three-phase version, effectively identifies an optimal solution. It determines the connections for the phases that balance the load in the nodes, reducing the losses of these systems by 4.155% and 19.249%, respectively.
Conclusions: The study found that the AOA is effective in minimizing power losses in asymmetrical distribution systems, sligthly outperforming the CSA and CBGA optimization methods. The algorithm demonstrated robustness in solution accuracy and proved useful in validating results using standardized IEEE test systems. The findings highlight the importance of implementing efficient optimization techniques. Future work is suggested to explore the application of AOA to other electrical problems and to develop variants that enhance its parameters and reduce processing times.
Resumen (es)
Objetivo: Este artículo presenta la aplicación del algoritmo de optimización aritmética (AOA) al problema de balance de fases observado en los sistemas de distribución. Se utiliza para su implementación el software MATLAB. Los resultados se comparan con las pérdidas reportadas en las redes presentadas en la literatura especializada sobre estudios que aplicaron otros algoritmos de optimización. El objetivo es encontrar la conexión óptima de las cargas en cada nodo para reducir las pérdidas de potencia activa (Función objetivo).
Metodología: Con base en la literatura especializada, se seleccionan las redes de prueba estándar IEEE de 25 y 37 nodos. Se propone seguir una estrategia maestro-esclavo, en la cual se programa el flujo de potencia barrido iterativo en su versión trifásica (etapa esclavo). Se caracterizan las pérdidas de potencia para una condición estándar de conexiones de fases en la carga y posteriormente se programa el algoritmo de optimización aritmética (AOA) (etapa maestro). Producto de ello, se definen las conexiones más óptimas a implementar, las cuales son luego comparadas y analizadas con otras metodologías
y con el caso base.
Resultados: usando los sistemas IEEE de prueba seleccionados de 25 y 37 nodos a partir de la literatura especializada, se comprueba que la metodología propuesta maestro-esclavo, la cual emplea el algoritmo de optimización aritmética (AOA) y el flujo de potencia de barrido iterativo en su versión trifásica, logra encontrar una solución óptima. Asimismo, logra definir conexiones para las fases que balancean la carga en los nodos, reduciendo así las pérdidas de dichos sistemas en un 4.155% y 19.249% respectivamente.
Conclusiones: el estudio encontró que el AOA es eficaz para minimizar la pérdida de potencia en sistemas de distribución de energía asimétricos, con un rendimiento ligeramente mejor que los métodos de optimización CSA y CBGA comparados. El algoritmo resultó ser robusto en cuanto a la precisión de la solución y útil para validar los resultados utilizando sistemas de prueba IEEE estandarizados. El estudio destaca la importancia de aplicar técnicas de optimización eficientes y propone
trabajos futuros sobre la aplicación del AOA a otros problemas eléctricos, así como el desarrollo de variantes para mejorar sus parámetros y reducir los tiempos de procesamiento.
Referencias
Abualigah, L., Diabat, A., Mirjalili, S., Abd Elaziz, M., & Gandomi, A. H. (2021). The Arithmetic Optimization Algorithm. Computer Methods in Applied Mechanics and Engineering, 376. https://doi.org/10.1016/j.cma.2020.113609
Arias, J., Calle, M., Turizo, D., Guerrero, J., & Candelo-Becerra, J. E. (2019). Historical load balance in distribution systems using the branch and bound algorithm. Energies, 12(7). https://doi.org/10.3390/en12071219
Carrión González, J. E. (2011). Análisis de métodos heurísticos de reconfiguración de sistemas de distribución para la reducción de pérdidas de potencia. Ingeniería Energética, 32(3), 9-17. https://www.redalyc.org/articulo.oa?id=329127748002
Chen, T.-H., & Cherng, J.-T. (1999). Optimal Phase Arrangement of Distribution Transformers Connected to a Primary Feeder for System Unbalance Improvement and Loss Reduction Using a Genetic Algorithm. Proceedings of the 21st International Conference on Power Industry Computer Applications. Connecting Utilities. PICA 99. To the Millennium and Beyond, 145-151. https://doi.org/10.1109/PICA.1999.779397
Correa, C. A., Bolaños, R. A., & Ruiz Garcés, A. (2007). Development and material properties of new hybrid medium density fibreboard from empty fruit bunch and rubberwood. Scientia et Technica Año XIII, 37. https://hdl.handle.net/11059/270
Correa M, O. I. (2010). Estudio de reconfiguración y optimización de los alimentadores de la subestación Machala perteneciente a la Corporación Nacional de Electricidad SA-Regional El Oro [Bachelor's thesis]. http://dspace.ups.edu.ec/handle/123456789/311
Cortés-Caicedo, B., Avellaneda-Gómez, L. S., Montoya, O. D., Alvarado-Barrios, L., & Chamorro, H. R. (2021a). Application of the vortex search algorithm to the phase-balancing problem in distribution systems. Energies, 14(5), 1282. https://doi.org/10.3390/en14051282
Cortés-Caicedo, B., Avellaneda-Gómez, L. S., Montoya, O. D., Alvarado-Barrios, L., & Álvarez-Arroyo, C. (2021b). An Improved Crow Search Algorithm Applied to the Phase Swapping Problem in Asymmetric Distribution Systems. Symmetry, 13(8), 1329. https://doi.org/10.3390/sym13081329
Comisión de Regulación de Energía y Gas. (2008). Cartilla Distribución de Energía Eléctrica. Nuevas Ediciones S.A. https://www.creg.gov.co/sites/default/files/distribucin%2520de%2520energa%2520elctrica.pdf
Fadhela, K. H., & Abdulmuttalib, T. R. (2018). Load Balancing in Distribution System Using Heuristic Search Algorithm. 2018 International Conference on Advance of Sustainable Engineering and its Application (ICASEA), 48-53. https://doi.org/10.1109/ICASEA.2018.8370954
Fahim, M., Hassan, E., & Najjar, B. E. (2018). Single Phase Load Balancing in a Three Phase System at Distribution and Unit Level. IEEE International Conference on Industrial Technology (ICIT), 1297-1301. https://doi.org/10.1109/ICIT.2018.8352365
Gandomkar, M. (2004). Phase balancing using genetic algorithm. *39th International Universities Power Engineering Conference, 1*, 377-379.
Gangwar, P., Singh, S. N., & Chakrabarti, S. (2019). An Analytical Approach for Phase Balancing Considering Customer Load Profile. *Proceedings of 2019 IEEE PES Innovative Smart Grid Technologies Europe, ISGT-Europe 2019*. https://doi.org/10.1109/ISGTEurope.2019.8905481
Garces, A. (2016). A Linear Three-Phase Load Flow for Power Distribution Systems. IEEE Transactions on Power Systems, 31(1), 827-828. https://doi.org/10.1109/TPWRS.2015.2394296
Garcés-Ruiz, A., Granada-Echeverri, M., & Gallego-R, R. A. (2005). Balance de fases usando colonia de hormigas. Ingeniería y Competitividad, 7(2), 43-52. http://hdl.handle.net/10893/1594
Gil-González, W., Montoya, O. D., Rajagopalan, A., Grisales-Noreña, L. F., & Hernández, J. C. (2020). Optimal selection and location of fixed-step capacitor banks in distribution networks using a discrete version of the vortex search algorithm. Energies, 13(18), 4914. https://doi.org/10.3390/en13184914
Gonzáles, E. F., Morante, J. A., & Vicuña, W. F. (2015). Estudio de un sistema de distribución y acometidas en baja tensión. Universidad Politécnica Salesiana. http://dspace.ups.edu.ec/handle/123456789/10236
Granada Echeverri, M., Gallego Rendón, R. A., & López Lezama, J. M. (2012). Optimal Phase Balancing Planning for Loss Reduction in Distribution Systems using a Specialized Genetic Algorithm. Ingeniería y Ciencia, 8(15), 121-140. https://www.redalyc.org/articulo.oa?id=83524069006
Grigoras, G., & Gavrilas, M. (2016). Phase Swapping of Lateral Branches from Low-Voltage Distribution Networks for Load Balancing. 2016 International Conference and Exposition on Electrical and Power Engineering (EPE), 715-718. https://doi.org/10.1109/ICEPE.2016.7781432
Grisales Noreña, L. F., Garzón Rivera, O. D., Montoya, O. D., & Ramos Paja, C. A. (2019). Hybrid Metaheuristic Optimization Methods for Optimal Location and Sizing DGs in DC Networks. Communications in Computer and Information Science, 1052, 214-226. https://hdl.handle.net/20.500.12585/9184
Hooshmand, R. A., & Soltani, S. (2012). Fuzzy optimal phase balancing of radial and meshed distribution networks using BF-PSO algorithm. IEEE Transactions on Power Systems, 27(1), 47-57. https://doi.org/10.1109/TPWRS.2011.2167991
Hraiz, M. D., Martín García, J. A., Jiménez Castañeda, R., & Muhsen, H. (2020). Optimal PV Size and Location to Reduce Active Power Losses While Achieving Very High Penetration Level With Improvement in Voltage Profile Using Modified Jaya Algorithm. IEEE Journal of Photovoltaics, 10(4), 1166-1174. https://doi.org/10.1109/JPHOTOV.2020.2995580
Huang, M. Y., Chen, C. S., Lin, C. H., Kang, M. S., Chuang, H. J., & Huang, C. W. (2008). Three-phase balancing of distribution feeders using immune algorithm. IET Generation, Transmission and Distribution, 2(3), 383-392. https://doi.org/10.1049/iet-gtd:20070206
Kaveh, A., & Biabani Hamedani, K. (2022). Improved arithmetic optimization algorithm and its application to discrete structural optimization. Structures, 35, 748-764. https://doi.org/10.1016/j.istruc.2021.11.012
Kharrich, M., Abualigah, L., Kamel, S., AbdEl-Sattar, H., & Tostado-Véliz, M. (2022). An Improved Arithmetic Optimization Algorithm for design of a microgrid with energy storage system: Case study of El Kharga Oasis, Egypt. Journal of Energy Storage, 51. https://doi.org/10.1016/j.est.2022.104343
Kuo, C. C., & Chao, Y. T. (2010). Energy management based on AM/FM/GIS for phase balancing application on distribution systems. Energy Conversion and Management, 51(3), 485-492. https://doi.org/10.1016/j.enconman.2009.10.011
Laconico, K. C. C., & Aguirre, R. A., Jr. (2019). Optimal Load Balancing and Capacitor Sizing and Siting of an Unbalanced Radial Distribution Network. IEEE PES GTD Grand International Conference and Exposition Asia (GTD Asia), 939-944. https://doi.org/10.1109/GTDAsia.2019.8715965
Lin, C. H., Chen, C. S., Chuang, H. J., & Ho, C. Y. (2005). Heuristic rule-based phase balancing of distribution systems by considering customer load patterns. IEEE Transactions on Power Systems, 20(2), 709-716. https://doi.org/10.1109/TPWRS.2005.846077
Lin, C. H., Chen, C. S., Chuang, H. J., Huang, M. Y., & Huang, C. W. (2008). An expert system for three-phase balancing of distribution feeders. IEEE Transactions on Power Systems, 23(3), 1488-1496. https://doi.org/10.1109/TPWRS.2008.926472
Montano, J., Garzón, O. D., Rosales Muñoz, A. A., Grisales Noreña, L. F., & Montoya, O. D. (2022). Application of the arithmetic optimization algorithm to solve the optimal power flow problem in direct current networks. Results in Engineering. https://doi.org/10.1016/j.rineng.2022.100654
Montoya, O. D., & Gil-González, W. (2020). On the numerical analysis based on successive approximations for power flow problems in AC distribution systems. Electric Power Systems Research, 187. https://doi.org/10.1016/j.epsr.2020.106454
Montoya, O. D., Gil-González, W., & Giral, D. A. (2020a). On the matricial formulation of iterative sweep power flow for radial and meshed distribution networks with guarantee of convergence. Applied Sciences (Switzerland), 10(17). https://doi.org/10.3390/app10175802
Montoya, O. D., Gil-González, W., & Grisales-Noreña, L. F. (2020b). An exact MINLP model for optimal location and sizing of DGs in distribution networks: A general algebraic modeling system approach. Ain Shams Engineering Journal, 11(2), 409-418. https://doi.org/10.1016/j.asej.2019.08.011
Montoya, O. D., Gil-González, W., & Orozco-Henao, C. (2020c). Vortex search and Chu-Beasley genetic algorithms for optimal location and sizing of distributed generators in distribution networks: A novel hybrid approach. Engineering Science and Technology, an International Journal, 23(6), 1351-1363. https://doi.org/10.1016/j.jestch.2020.08.002
Montoya, O. D., Molina-Cabrera, A., Grisales-Noreña, L. F., Hincapié, R. A., & Granada, M. (2021). Improved Genetic Algorithm for Phase-Balancing in Three-Phase Distribution Networks: A Master-Slave Optimization Approach. Computation, 9(6), 67. https://doi.org/10.3390/computation9060067
Montoya, O. D., Gil-González, W. J., & Garcés-Ruíz, A. (2017). Flujo de potencia óptimo para redes radiales y enmalladas empleando programación semidefinida. Tecnológicas, 20(40), 29-42.
Nicusor, T., Ovidiu, I., Bogdan, N., & Mihai, G. (2018). A PSO Algorithm for Phase Load Balancing in Low Voltage Distribution Networks. 2018 International Conference and Exposition on Electrical And Power Engineering (EPE), 0857-0862. https://doi.org/10.1109/ICEPE.2018.8559805
Ovidiu, I., Bogdan-Constantin, N., Mihai, G., Gheorghe, G., & Calin-Viorel, S. (2009). Phase Load Balancing in Low Voltage Distribution Networks Using Metaheuristic Algorithms. 2009 International Conference on Electromechanical and Energy Systems (SIELMEN), 1-6. https://doi.org/10.1109/SIELMEN.2019.8905900
Quille Pinto, F. S. (2015). Optimización de flujo de potencia en el sistema eléctrico ecuatoriano con programación no lineal bajo MATLAB [Tesis de maestría]. Universidad Politécnica Salesiana. https://dspace.ups.edu.ec/handle/123456789/8066
Ramirez Castaño, S. (2019). Redes de distribución de energía. Repositorio Universidad Nacional de Colombia sede Manizales. https://repositorio.unal.edu.co/handle/unal/7095
Rendón, R. A., Granada, M., & Escobar, A. (2006). Technical loss reduction using correctives stages fitting - Phase I. Revista Colombiana de Tecnologías de Avanzada, 1. https://www.unipamplona.edu.co/unipamplona/portalIG/home_40/recursos/02_v07_12/revista_07/16112011/v07_14.pdf
Rios, M. A., Castaño, J. C., Garcés, A., & Molina-Cabrera, A. (2019). Phase Balancing in Power Distribution Systems: A heuristic approach based on group-theory. 2019 IEEE Milan PowerTech, 1-6. https://doi.org/10.1109/PTC.2019.8810723
Ruiz, A. G., Manso, J. C. G., & Gallego Rendón, R. A. (2006). Solución al problema de balance de fases y reconfiguración de alimentadores primarios bajo un modelamiento trifásico usando Simulated Annealing. Scientia et Technica Año XII, 37-42. https://www.redalyc.org/articulo.oa?id=84920491059
Sarmiento Vargas, G. A., & Ávila Furque, E. J. (2022). Aplicación del algoritmo de caza de ballenas al problema de balance de fases en sistemas de distribución desbalanceados [Tesis de pregrado]. Repositorio Universidad Distrital Francisco José de Caldas. https://hdl.handle.net/11349/30225
Sathiskumar, M., Nirmal Kumar, A., Lakshminarasimman, L., & Thiruvenkadam, S. (2012). A self adaptive hybrid differential evolution algorithm for phase balancing of unbalanced distribution system. International Journal of Electrical Power and Energy Systems, 42(1), 91-97. https://doi.org/10.1016/j.ijepes.2012.03.029
Schneider, K. P., Mather, B. A., Pal, B. C., Ten, C. W., Shirek, G. J., Zhu, H., & Kersting, W. (2018). Analytic Considerations and Design Basis for the IEEE Distribution Test Feeders. IEEE Transactions on Power Systems, 33(3), 3181-3188. https://doi.org/10.1109/TPWRS.2017.2760011
Shen, T., Li, Y., & Xiang, J. (2018). A graph-based power flow method for balanced distribution systems. Energies, 11(3), 511. https://doi.org/10.3390/en11030511
Singh, B., Payasi, R. P., & Shukla, V. (2017). A taxonomical review on impact assessment of optimally placed DGs and FACTS controllers in power systems. Energy Reports, 3, 94-108. https://doi.org/10.1016/j.egyr.2017.07.001
Sirjani, R., Mohamed, A., & Shareef, H. (2011). Optimal placement and sizing of Static Var Compensators in power systems using Improved Harmony Search Algorithm. Przeglad Elektrotechniczny (Electrical Review), 214-218.
Solera Losada, N. A., Villalba Jaramillo, J. P., & Montoya Giraldo, O. D. (2022). Integración Óptima de Generadores Fotovoltaicos en Sistemas de Distribución DC a través de la Aplicación del Algoritmo de Optimización Aritmética Modificado. TecnoLógicas, 25(55). https://doi.org/10.22430/22565337.2418
Swapna, M., & Udaykumar, R. Y. (2016). An Algorithm for Optimal Phase Balancing of Secondary Distribution Systems at Each Node. *2016 IEEE PES 13th International Conference on Transmission & Distribution Construction, Operation & Live-Line Maintenance (ESMO)*, 1-5. https://doi.org/10.1109/TDCLLM.2016.8013241
Swapna, M., & Udaykumar, R. Y. (2017). Backward Sweep Technique Based Phase Balancing Algorithm for Secondary Distribution System. *2017 IEEE PES Asia-Pacific Power and Energy Engineering Conference (APPEEC)*, 1-6.
Tuppadung, Y., & Kurutach, W. (2006). The Modified Particle Swarm Optimization for Phase Balancing. *TENCON 2006 - 2006 IEEE Region 10 Conference*, 1-4. https://doi.org/10.1109/TENCON.2006.344014
Zeng, R. H., Abualigah, L., Liu, Q., & Wang, S. (2022). An Improved arithmetic optimization algorithm with forced switching mechanism for global optimization problems. Math Biosci Eng, 19(1), 473-512. https://doi.org/10.3934/mbe.2022023
Zhu, J., Bilbro, G., & Chow, M.-Y. (1999). Phase Balancing using Simulated Annealing. IEEE Transactions on Power Systems, 14(4), 1508-1513. https://doi.org/10.1109/59.801943
Zhu, J., Chow, M.-Y., & Zhang, F. (1998). Phase Balancing using Mixed-Integer Programming. IEEE Transactions on Power Systems, 13(4), 1487-1492. https://doi.org/10.1109/59.736295
Cómo citar
APA
ACM
ACS
ABNT
Chicago
Harvard
IEEE
MLA
Turabian
Vancouver
Descargar cita
Licencia
Derechos de autor 2025 Nelson Omero Tique Tique, Juan Camilo Castillo Sáenz, Oscar Danilo Montoya Giraldo

Esta obra está bajo una licencia internacional Creative Commons Atribución-CompartirIgual 4.0.
Esta licencia permite a otros remezclar, adaptar y desarrollar su trabajo incluso con fines comerciales, siempre que le den crédito y concedan licencias para sus nuevas creaciones bajo los mismos términos. Esta licencia a menudo se compara con las licencias de software libre y de código abierto “copyleft”. Todos los trabajos nuevos basados en el tuyo tendrán la misma licencia, por lo que cualquier derivado también permitirá el uso comercial. Esta es la licencia utilizada por Wikipedia y se recomienda para materiales que se beneficiarían al incorporar contenido de Wikipedia y proyectos con licencias similares.
