Exploring Control Approaches for Robot-Based Gait Rehabilitation and Locomotion Assistance: A Comprehensive Review

Exploración de enfoques de control para la rehabilitación de la marcha y asistencia a la locomoción basada en robots: Una revisión exhaustiva

Autores/as

Palabras clave:

Adaptive control strategy, Assist-As-Needed control, Human-Robot interaction, Human-Robot synchronization, Lower limb exoskeleton, Robot-assisted gait rehabilitation (en).

Palabras clave:

Estrategia de control adaptativo, Control Assist-As-Needed, Interacción Humano-Robot, Sincronización Humano-Robot, Exoesqueleto de miembros inferiores, Rehabilitación de la marcha asistida por robots (es).

Resumen (en)

Context: Robot-assisted gait rehabilitation is a rapidly evolving field that aims to enhance therapeutic outcomes through the integration of advanced robotic systems. These systems reduce the physical burden on therapists while enabling intensive and repetitive patient training. However, current methods often require manual adjustments tailored to individual gait patterns, limiting their generalizability and efficiency.
Objective: This paper provides a comprehensive review of control approaches for robot-based gait rehabilitation and locomotion assistance, focusing on improving adaptability and human-robot synchronization. The goal is to identify effective techniques and methods that optimize exoskeleton performance and improve patient outcomes. Methodology: A state-of-the-art review was conducted through a structured literature search across multiple scientific databases to identify research on lower-limb exoskeletons, centering on control strategies for robot-assisted gait rehabilitation. The search initially employed broad keywords such as “lower limb exoskeletons,” “extremity lower exoskeletons,” and “lower limb robotic exoskeletons,” among others. It was then refined using more specific terms including “lower limb exoskeleton control,” “assisted gait control,” “assistance control strategy,” “wearable robots control,” and “robotic rehabilitation,” among others. Well-defined inclusion criteria ensured thematic relevance, methodological rigor, and comprehensive coverage of recent advancements. A total of 77 studies meeting these criteria were analyzed to identify and categorize control approaches, and to discuss their scope, advantages, and limitations rather than directly assessing their clinical effectiveness or patient outcome improvements. Future research should focus on data-driven control methods to address individual variability and improve exoskeleton adaptability.
Results: The review highlights a taxonomy of essential control strategies for robot-assisted gait, such as trajectory tracking based on position, force-impedance control, control driven by bio-signals, and adaptive control techniques. Real-time adaptive strategies, such as Velocity Field Control and Assist-As-Needed approaches, demonstrate strong potential for improving synchronization and reducing manual tuning requirements.
Conclusions: Adaptive control strategies, particularly Assist-As-Needed controllers, are effective in encouraging active patient participation and optimizing rehabilitation outcomes.
Financing: This research work received funding from Universidad del Valle under the project "Plataforma tecnológica modular para la valoración objetiva de la marcha humana" (C.I. 21259) and from the Ministry of Science, Technology, and Innovation (Minciencias - Open call 647).

Resumen (es)

Contexto: la rehabilitación de la marcha asistida por robots es un campo en rápida evolución que busca mejorar los resultados terapéuticos mediante la integración de sistemas robóticos avanzados. Estos sistemas reducen la carga física sobre los terapeutas y permiten entrenamientos intensivos y repetitivos para los pacientes. Sin embargo, los métodos actuales suelen requerir ajustes manuales adaptados a los patrones de marcha individuales, lo que limita su generalización y eficiencia.
Objetivo: este artículo presenta una revisión integral de los enfoques de control utilizados en la rehabilitación y asistencia de la marcha mediante robots, con énfasis en mejorar la adaptabilidad y la sincronización humano-robot. El objetivo es identificar técnicas y métodos efectivos que optimicen el desempeño de los exoesqueletos y contribuyan a mejorar los resultados en los pacientes. Metodología: se realizó una revisión del estado del arte a través de una búsqueda estructurada de literatura en múltiples bases de datos científicas para identificar investigaciones sobre exoesqueletos de miembros inferiores con enfoque en estrategias de control para la rehabilitación robótica de la marcha. La búsqueda inicial utilizó palabras clave generales como “lower limb exoskeletons”, “extremity lower exoskeletons” y “lower limb robotic exoskeletons”, entre otras. Posteriormente, se refinó empleando términos más específicos, incluidos “lower limb exoskeleton control”, “assisted gait control”, “assistance control strategy”, “wearable robots control” y “robotic rehabilitation”, entre otros. Se aplicaron criterios de inclusión claramente definidos que aseguraron la relevancia temática, el rigor metodológico y la cobertura de los avances más recientes. Un total de 77 estudios que cumplían con estos criterios fueron analizados para identificar y categorizar enfoques de control, así como para discutir su alcance, ventajas y limitaciones, más que para evaluar directamente su efectividad clínica o su impacto en los resultados de los pacientes. Se sugiere que futuras investigaciones se centren en métodos de control basados en datos para abordar la variabilidad individual y mejorar la adaptabilidad de los exoesqueletos.
Resultados: la revisión resalta una taxonomía de estrategias de control esenciales para la rehabilitación robótica de la marcha, como el seguimiento de trayectoria basado en posición, el control de fuerza-impedancia, el control basado en bioseñales y las técnicas de control adaptativo. Las estrategias adaptativas en tiempo real, como Velocity Field Control y los enfoques de Assist-As-Needed, muestran un alto potencial para mejorar la sincronización y reducir la necesidad de ajustes manuales. Conclusiones: las estrategias de control adaptativo, especialmente el control Assist-As-Needed, resultan efectivas para fomentar la participación activa del paciente y optimizar los resultados en los procesos de rehabilitación.
Financiamiento: este trabajo de investigación recibió financiamiento de la Universidad del Valle, bajo el proyecto "Plataforma tecnológica modular para la valoración objetiva de la marcha humana" (C.I. 21259), y el Ministerio de Ciencia, Tecnología e Innovación (Convocatoria abierta 647).

Biografía del autor/a

Sergey González Mejia, Universidad del Valle

Doctor in Engineering with a focus on Electrical and Electronics Engineering, Master in Engineering with a focus on Automatics, Specialist in Industrial Automation, Electronics Engineer. Postdoctoral Researcher at Universidad del Valle, Industrial Control Research Group, School of Electrical and Electronics Engineering, Cali (Colombia)

José Miguel Ramírez-Scarpetta, Universidad del Valle

Ph.D. in Automatics, Master in Energy Generation Systems, Electrical Engineer. Professor at Universidad del Valle, Industrial Control Research Group, School of Electrical and Electronics Engineering, Cali (Colombia)

Referencias

[1] M. S. Alqahtani, G. Cooper, C. Diver, and P. J. Bártolo, “Exoskeletons for Lower Limb Applications: A Review,” in Bio-Materials and Prototyping Applications in Medicine, Cham: Springer International Publishing, 2021, pp. 139–164. doi: 10.1007/978-3-030-35876-1_8.

[2] S. González-Mejía and J. M. Ramírez-Scarpetta, “Advances in Robotic Rehabilitation for Lower Limb Recovery and Walking Assistance,” Ing. Compet., vol. 27, no. 1, pp. 1–24, Feb. 2025, doi: 10.25100/iyc.v27i1.14594.

[3] M. A. Garcia Velarde, W. M. Alcocer Rosado, A. Blanco Ortega, A. Abúndez, C. Cortés, and J. Colin, “Lower limb assistance systems: A state of the art,” Lat. Am. Appl. Res. - Int. J., vol. 52, no. 2, pp. 89–99, Mar. 2022, doi: 10.52292/j.laar.2022.626.

[4] J. de Miguel-Fernández, J. Lobo-Prat, E. Prinsen, J. M. Font-Llagunes, and L. Marchal-Crespo, “Control strategies used in lower limb exoskeletons for gait rehabilitation after brain injury: a systematic review and analysis of clinical effectiveness,” J. NeuroEngineering Rehabil., vol. 20, no. 1, p. 23, Feb. 2023, doi: 10.1186/s12984-023-01144-5.

[5] S. González-Mejía, “Partial Assistance Control on a Robotic Platform with an Exoskeleton for the Human Gait Rehabilitation,” Doctoral thesis, Universidad del Valle, Cali, Colombia, 2023. doi: https://doi.org/10.17605/OSF.IO/J7XFH.

[6] A. R. Olaya, “Sistema robótico multimodal para análisis y estudios en biomecánica, movimiento humano y control neuromotor,” Doctoral Thesis, Departamento de Ingeniería de Sistemas y Automática, Universidad Carlos III de Madrid, España, 2008.

[7] N. Hogan, “Impedance Control: An Approach to Manipulation: Part I, II, III,” J. Dyn. Syst. Meas. Control, vol. 107, no. 1, pp. 1–7, Mar. 1985, doi: 10.1115/1.3140702.

[8] A. Calanca, R. Muradore, and P. Fiorini, “A Review of Algorithms for Compliant Control of Stiff and Fixed-Compliance Robots,” IEEE/ASME Trans. Mechatron., vol. 21, no. 2, pp. 613–624, Apr. 2016, doi: 10.1109/TMECH.2015.2465849.

[9] S. Oh, E. Baek, S. Song, S. Mohammed, D. Jeon, and K. Kong, “A generalized control framework of assistive controllers and its application to lower limb exoskeletons,” Robot. Auton. Syst., vol. 73, pp. 68–77, Nov. 2015, doi: 10.1016/j.robot.2014.10.001.

[10] J. De Schutter, “A study of active compliant motion control methods for rigid manipulators based on a generic scheme,” in Proceedings. 1987 IEEE International Conference on Robotics and Automation, Institute of Electrical and Electronics Engineers, 1987, pp. 1060–1065. doi: 10.1109/ROBOT.1987.1087856.

[11] W. T. Townsend, “The effect of transmission design on force-controlled manipulator performance,” Ph.D. Thesis, Massachusetts Institute of Technology, Dept. of Mechanical Engineering,United States, 1988.

[12] T. Ishida and A. Takanishi, “A Robot Actuator Development With High Backdrivability,” in 2006 IEEE Conference on Robotics, Automation and Mechatronics, IEEE, Dec. 2006, pp. 1–6. doi: 10.1109/RAMECH.2006.252631.

[13] K. Ohnishi, M. Shibata, and T. Murakami, “Motion control for advanced mechatronics,” IEEE/ASME Trans. Mechatron., vol. 1, no. 1, pp. 56–67, Mar. 1996, doi: 10.1109/3516.491410.

[14] J. V. G. Robertson, N. Jarrassé, and A. Roby-Brami, “Rehabilitation robots: a compliment to virtual reality,” Schedae Press. Univ. Caen, vol. 6, no. 1, pp. 77–94, 2010.

[15] S. Pittaccio and S. Viscuso, “An EMG-Controlled SMA Device for the Rehabilitation of the Ankle Joint in Post-Acute Stroke,” J. Mater. Eng. Perform., vol. 20, no. 4–5, pp. 666–670, July 2011, doi: 10.1007/s11665-010-9826-7.

[16] W. Meng, Q. Liu, Z. Zhou, Q. Ai, B. Sheng, and S. S. Xie, “Recent development of mechanisms and control strategies for robot-assisted lower limb rehabilitation,” Mechatronics, vol. 31, pp. 132–145,Oct. 2015, doi: 10.1016/j.mechatronics.2015.04.005.

[17] D. Pinto-Fernandez et al., “Performance Evaluation of Lower Limb Exoskeletons: A Systematic Review,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 28, no. 7, pp. 1573–1583, July 2020, doi: 10.1109/TNSRE.2020.2989481.

[18] C. Liang and T. Hsiao, “Walking Strategies and Performance Evaluation for Human-Exoskeleton Systems under Admittance Control,” Sensors, vol. 20, no. 15, p. 4346, Aug. 2020, doi: 10.3390/s20154346.

[19] W. Huo, S. Mohammed, J. C. Moreno, and Y. Amirat, “Lower Limb Wearable Robots for Assistance and Rehabilitation: A State of the Art,” IEEE Syst. J., vol. 10, no. 3, pp. 1068–1081, Sept. 2016, doi: 10.1109/JSYST.2014.2351491.

[20] J. Cao, S. Q. Xie, R. Das, and G. L. Zhu, “Control strategies for effective robot assisted gait rehabilitation: The state of art and future prospects,” Med. Eng. Phys., vol. 36, no. 12, pp. 1555–1566, Dec. 2014, doi: 10.1016/j.medengphy.2014.08.005.

[21] Z. Yang, W. Gu, J. Zhang, and L. Gui, Force Control Theory and Method of Human Load Carrying Exoskeleton Suit. Berlin, Heidelberg: Springer Berlin Heidelberg, 2017. doi: 10.1007/978-3-662-54144-9.

[22] B. Chen et al., “Recent developments and challenges of lower extremity exoskeletons,” J. Orthop. Transl., vol. 5, pp. 26–37, Apr. 2016, doi: 10.1016/j.jot.2015.09.007.

[23] B. Chen, B. Zi, Z. Wang, L. Qin, and W.-H. Liao, “Knee exoskeletons for gait rehabilitation and human performance augmentation: A state-of-the-art,” Mech. Mach. Theory, vol. 134, pp. 499–511, Apr. 2019, doi: 10.1016/j.mechmachtheory.2019.01.016.

[24] P. K. Jamwal, S. Hussain, and S. Q. Xie, “Review on design and control aspects of ankle rehabilitation robots,” Disabil. Rehabil. Assist. Technol., vol. 10, no. 2, pp. 93–101, Mar. 2015, doi: 10.3109/17483107.2013.866986.

[25] I. Tijjani, S. Kumar, and M. Boukheddimi, “A Survey on Design and Control of Lower Extremity Exoskeletons for Bipedal Walking,” Appl. Sci., vol. 12, no. 5, p. 2395, Feb. 2022, doi: 10.3390/app12052395.

[26] V. Rajasekaran, “Adaptive Control for Wearable Robots in Human-Centered Rehabilitation Tasks,” Doctoral thesis, Universitat Politécnica de Catalunya, BarcelonaTECH, España, 2015.

[27] O. Harib et al., “Feedback Control of an Exoskeleton for Paraplegics: Toward Robustly Stable, Hands-Free Dynamic Walking,” IEEE Control Syst., vol. 38, no. 6, pp. 61–87, Dec. 2018, doi: 10.1109/MCS.2018.2866604.

[28] H. Ma, W.-Y. Lai, W.-H. Liao, D. T.-P. Fong, K.-M. Chan, “Design and control of a powered knee orthosis for gait assistance,” in *2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics*, IEEE, July 2013, pp. 816–821. doi: 10.1109/AIM.2013.6584194.

[29] H. Vallery, E. H. F. van Asseldonk, M. Buss, and H. van der Kooij, “Reference Trajectory Generation for Rehabilitation Robots: Complementary Limb Motion Estimation,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 17, no. 1, pp. 23–30, Feb. 2009, doi: 10.1109/TNSRE.2008.2008278.

[30] J. A. Saglia, N. G. Tsagarakis, J. S. Dai, and D. G. Caldwell, “Control Strategies for Patient-Assisted Training Using the Ankle Rehabilitation Robot (ARBOT),” IEEE/ASME Trans. Mechatron., vol. 18, no. 6, pp. 1799–1808, Dec. 2013, doi: 10.1109/TMECH.2012.2214228.

[31] K. Shamaei, P. C. Napolitano, and A. M. Dollar, “Design and Functional Evaluation of a Quasi-Passive Compliant Stance Control Knee–Ankle–Foot Orthosis,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 22, no. 2, pp. 258–268, Mar. 2014, doi: 10.1109/TNSRE.2014.2305664.

[32] M. Cestari, D. Sanz-Merodio, J. C. Arevalo, and E. Garcia, “An Adjustable Compliant Joint for Lower-Limb Exoskeletons,” IEEE/ASME Trans. Mechatron., vol. 20, no. 2, pp. 889–898, Apr. 2015, doi: 10.1109/TMECH.2014.2324032.

[33] P. Beyl, M. Van Damme, R. Van Ham, B. Vanderborght, and D. Lefeber, “Design and control of a lower limb exoskeleton for robot-assisted gait training,” Appl. Bionics Biomech., vol. 6, no. 2, pp. 229–243, July 2009, doi: 10.1080/11762320902784393.

[34] I. Kardan and A. Akbarzadeh, “Output feedback assistive control of single-DOF SEA powered exoskeletons,” Ind. Robot Int. J., vol. 44, no. 3, pp. 275–287, May 2017, doi: 10.1108/IR-08-2016-0214.

[35] I. Kardan and A. Akbarzadeh, “Robust output feedback assistive control of a compliantly actuated knee exoskeleton,” Robot. Auton. Syst., vol. 98, pp. 15–29, Dec. 2017, doi: 10.1016/j.robot.2017.09.006.

[36] K. Anam and A. A. Al-Jumaily, “Active Exoskeleton Control Systems: State of the Art,” Procedia Eng., vol. 41, pp. 988–994, 2012, doi: 10.1016/j.proeng.2012.07.273.

[37] M.-S. Ju, C.-C. K. Lin, D.-H. Lin, I.-S. Hwang, and S.-M. Chen, “A Rehabilitation Robot With Force-Position Hybrid Fuzzy Controller: Hybrid Fuzzy Control of Rehabilitation Robot,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 13, no. 3, pp. 349–358, Sept. 2005, doi: 10.1109/TNSRE.2005.847354.

[38] M. Bernhardt, M. Frey, G. Colombo, and R. Riener, “Hybrid Force-Position Control Yields Cooperative Behaviour of the Rehabilitation Robot Lokomat,” in 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005., IEEE, 2005, pp. 536–539. doi: 10.1109/ICORR.2005.1501159.

[39] G. Chen, P. Qi, Z. Guo, and H. Yu, “Mechanical design and evaluation of a compact portable knee–ankle–foot robot for gait rehabilitation,” Mech. Mach. Theory, vol. 103, pp. 51–64, Sept. 2016, doi: 10.1016/j.mechmachtheory.2016.04.012.

[40] P. Beyl et al., “Safe and Compliant Guidance by a Powered Knee Exoskeleton for Robot-Assisted Rehabilitation of Gait,” Adv. Robot., vol. 25, no. 5, pp. 513–535, Jan. 2011, doi: 10.1163/016918611X558225.

[41] G. Courtois, J. Chevrie, A. Dequidt, X. Bonnet, and P. Pudlo, “Design of a Rehabilitation Exoskeleton with Impedance Control: First Experiments,” in Proceedings of the 18th International Conference on Informatics in Control, Automation and Robotics, SCITEPRESS - Science and Technology Publications, 2021, pp. 469–476. doi: 10.5220/0010580004690476.

[42] A. Davoodi, M. Iranikhah, A. Ahmadi, A. Seyfarth, and M. A. Sharbafi, “Bioinspired Design and Control of BATEX, An Exosuit With Biarticular Compliant Actuators,” IEEE/ASME Trans. Mechatron., vol. 29, no. 2, pp. 1352–1362, Apr. 2024, doi: 10.1109/TMECH.2023.3299117.

[43] J. F. Veneman, R. Kruidhof, E. E. G. Hekman, R. Ekkelenkamp, E. H. F. Van Asseldonk, and H. van der Kooij, “Design and Evaluation of the LOPES Exoskeleton Robot for Interactive Gait Rehabilitation,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 15, no. 3, pp. 379–386, Sept. 2007, doi: 10.1109/TNSRE.2007.903919.

[44] S. Hussain, S. Q. Xie, and P. K. Jamwal, “Adaptive Impedance Control of a Robotic Orthosis for Gait Rehabilitation,” IEEE Trans. Cybern., vol. 43, no. 3, pp. 1025–1034, June 2013, doi: 10.1109/TSMCB.2012.2222374.

[45] B. Koopman, E. H. van Asseldonk, and H. van der Kooij, “Selective control of gait subtasks in robotic gait training: foot clearance support in stroke survivors with a powered exoskeleton,” J. NeuroEngineering Rehabil., vol. 10, no. 1, p. 3, 2013, doi: 10.1186/1743-0003-10-3.

[46] K. K. Karunakaran, K. Abbruzzese, G. Androwis, and R. A. Foulds, “A Novel User Control for Lower Extremity Rehabilitation Exoskeletons,” Front. Robot. AI, vol. 7, no. September, pp. 1–14, Sept. 2020, doi: 10.3389/frobt.2020.00108.

[47] M. K. Shepherd and E. J. Rouse, “Design and Validation of a Torque-Controllable Knee Exoskeleton for Sit-to-Stand Assistance,” IEEE/ASME Trans. Mechatron., vol. 22, no. 4, pp. 1695–1704, Aug. 2017, doi: 10.1109/TMECH.2017.2704521.

[48] J. E. Pratt, B. T. Krupp, C. J. Morse, and S. H. Collins, “The RoboKnee: an exoskeleton for enhancing strength and endurance during walking,” in IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA ’04. 2004, IEEE, 2004, pp. 2430-2435 Vol.3. doi: 10.1109/ROBOT.2004.1307425.

[49] C. Castellini, P. van der Smagt, G. Sandini, and G. Hirzinger, “Surface EMG for force control of mechanical hands,” in 2008 IEEE International Conference on Robotics and Automation, IEEE, May 2008, pp. 725–730. doi: 10.1109/ROBOT.2008.4543291.

[50] B. Cesqui, P. Tropea, S. Micera, and H. Krebs, “EMG-based pattern recognition approach in post stroke robot-aided rehabilitation: a feasibility study,” J. NeuroEngineering Rehabil., vol. 10, no. 1, p. 75, 2013, doi: 10.1186/1743-0003-10-75.

[51] O. Fukuda, T. Tsuji, M. Kaneko, and A. Otsuka, “A human-assisting manipulator teleoperated by EMG signals and arm motions,” IEEE Trans. Robot. Autom., vol. 19, no. 2, pp. 210–222, Apr. 2003, doi: 10.1109/TRA.2003.808873.

[52] D. Maeda et al., “Muscle synergy analysis of human adaptation to a variable-stiffness exoskeleton: Human walk with a knee exoskeleton with pneumatic artificial muscles,” in *2012 12th IEEE-RAS International Conference on Humanoid Robots (Humanoids 2012)*, IEEE, Nov. 2012, pp. 638–644. doi: 10.1109/HUMANOIDS.2012.6651587.

[53] A. S. Kundu, O. Mazumder, R. Chattaraj, S. Bhaumik, and P. kumar Lenka, “Trajectory generation for myoelectrically controlled lower limb active knee exoskeleton,” in 2014 Seventh International Conference on Contemporary Computing (IC3), IEEE, Aug. 2014, pp. 230–235. doi: 10.1109/IC3.2014.6897178.

[54] T. Lenzi, S. M. M. De Rossi, N. Vitiello, and M. C. Carrozza, “Intention-Based EMG Control for Powered Exoskeletons,” IEEE Trans. Biomed. Eng., vol. 59, no. 8, pp. 2180–2190, Aug. 2012, doi: 10.1109/TBME.2012.2198821.

[55] Y. H. Yin, Y. J. Fan, and L. D. Xu, “EMG and EPP-Integrated Human-Machine Interface Between the Paralyzed and Rehabilitation Exoskeleton,” IEEE Trans. Inf. Technol. Biomed., vol. 16, no. 4, pp. 542–549, July 2012, doi: 10.1109/TITB.2011.2178034.

[56] Y. Fan and Y. Yin, “Active and Progressive Exoskeleton Rehabilitation Using Multisource Information Fusion From EMG and Force-Position EPP,” IEEE Trans. Biomed. Eng., vol. 60, no. 12, pp. 3314–3321, Dec. 2013, doi: 10.1109/TBME.2013.2267741.

[57] J. Charafeddine, S. Chevallier, S. Alfayad, M. Khalil, and D. Pradon, “Biokinematic Control Strategy for Rehabilitation Exoskeleton Based on User Intention,” Int. J. Model. Optim., vol. 9, no. 6, pp. 322–328, Dec. 2019, doi: 10.7763/IJMO.2019.V9.730.

[58] G. Kwakkel, B. J. Kollen, and H. I. Krebs, “Effects of Robot-Assisted Therapy on Upper Limb Recovery After Stroke: A Systematic Review,” Neurorehabil. Neural Repair, vol. 22, no. 2, pp. 111–121, Mar. 2008, doi: 10.1177/1545968307305457.

[59] L. Marchal-Crespo and D. J. Reinkensmeyer, “Review of control strategies for robotic movement training after neurologic injury,” J. NeuroEngineering Rehabil., vol. 6, no. 1, p. 20, Dec. 2009, doi: 10.1186/1743-0003-6-20.

[60] S. Hussain, P. Jamwal, and M. Ghayesh, “Single joint robotic orthoses for gait rehabilitation: An educational technical review,” J. Rehabil. Med., vol. 48, no. 4, pp. 333–338, 2016, doi: 10.2340/16501977-2073.

[61] A. Duschau-Wicke, J. von Zitzewitz, A. Caprez, L. Lunenburger, and R. Riener, “Path Control: A Method for Patient-Cooperative Robot-Aided Gait Rehabilitation,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 18, no. 1, pp. 38–48, Feb. 2010, doi: 10.1109/TNSRE.2009.2033061.

[62] B. M. Fleerkotte, B. Koopman, J. H. Buurke, E. H. F. van Asseldonk, H. van der Kooij, and J. S. Rietman, “The effect of impedance-controlled robotic gait training on walking ability and quality in individuals with chronic incomplete spinal cord injury: an explorative study,” J. NeuroEngineering Rehabil., vol. 11, no. 1, p. 26, 2014, doi: 10.1186/1743-0003-11-26.

[63] E. T. Wolbrecht, V. Chan, D. J. Reinkensmeyer, and J. E. Bobrow, “Optimizing Compliant, Model-Based Robotic Assistance to Promote Neurorehabilitation,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 16, no. 3, pp. 286–297, June 2008, doi: 10.1109/TNSRE.2008.918389.

[64] L. Chen, J. Huang, Y. Wang, S. Guo, M. Wang, and X. Guo, “Adaptive patient-cooperative compliant control of lower limb rehabilitation robot,” Biomim. Intell. Robot., vol. 4, no. 2, p. 100155, June 2024, doi: 10.1016/j.birob.2024.100155.

[65] R. Riener, L. Lunenburger, S. Jezernik, M. Anderschitz, G. Colombo, and V. Dietz, “Patient-Cooperative Strategies for Robot-Aided Treadmill Training: First Experimental Results,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 13, no. 3, pp. 380–394, Sept. 2005, doi: 10.1109/TNSRE.2005.848628.

[66] S. Jezernik, G. Colombo, and M. Morari, “Automatic Gait-Pattern Adaptation Algorithms for Rehabilitation With a 4-DOF Robotic Orthosis,” IEEE Trans. Robot. Autom., vol. 20, no. 3, pp. 574–582, June 2004, doi: 10.1109/TRA.2004.825515.

[67] M. Bortole et al., “The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study,” J. NeuroEngineering Rehabil., vol. 12, no. 1, p. 54, Dec. 2015, doi: 10.1186/s12984-015-0048-y.

[68] D. Sanz-Merodio, M. Cestari, J. C. Arevalo, X. A. Carrillo, and E. Garcia, “Generation and control of adaptive gaits in lower-limb exoskeletons for motion assistance,” Adv. Robot., vol. 28, no. 5, pp. 329–338, Mar. 2014, doi: 10.1080/01691864.2013.867284.

[69] R. C. Bonitz and T. C. Hsia, “Internal force-based impedance control for cooperating manipulators,” IEEE Trans. Robot. Autom., vol. 12, no. 1, pp. 78–89, 1996, doi: 10.1109/70.481752.

[70] Y. Mu, L. Zou, Z. Wang, J. Li, L. Jiang, and W. Wang, “A novel model predictive dynamic adaptive impedance control for robotic force tracking on complex surfaces,” Control Eng. Pract., vol. 163, p. 106398, Oct. 2025, doi: 10.1016/j.conengprac.2025.106398.

[71] S. Haddadin and E. Shahriari, “Unified force-impedance control,” Int. J. Robot. Res., vol. 43, no. 13, pp. 2112–2141, Nov. 2024, doi: 10.1177/02783649241249194.

[72] L. Gu and Q. Huang, “Adaptive Impedance Control for Force Tracking in Manipulators Based on Fractional-Order PID,” Appl. Sci., vol. 13, no. 18, p. 10267, Sept. 2023, doi: 10.3390/app131810267.

[73] A. L. Jutinico, J. C. Jaimes, F. M. Escalante, J. C. Perez-Ibarra, M. H. Terra, and A. A. G. Siqueira, “Impedance Control for Robotic Rehabilitation: A Robust Markovian Approach,” Front. Neurorobotics, vol. 11, Aug. 2017, doi: 10.3389/fnbot.2017.00043.

[74] J. C. Arevalo and E. Garcia, “Impedance Control for Legged Robots: An Insight Into the Concepts Involved,” IEEE Trans. Syst. Man Cybern. Part C Appl. Rev., vol. 42, no. 6, pp. 1400–1411, Nov. 2012, doi: 10.1109/TSMCC.2012.2187190.

[75] Y. Zhu, G. Zhang, C. Zhang, G. Liu, and J. Zhao, “Biomechanical modeling and load-carrying simulation of lower limb exoskeleton,” Biomed. Mater. Eng., vol. 26, no. s1, pp. S729–S738, Aug. 2015, doi: 10.3233/BME-151364.

[76] R. Mendoza-Crespo, R. Soto, and J. L. Pons, “Transparent Mode for Lower Limb Exoskeleton,” in Wearable Robotics: Challenges and Trends, Biosystems & Biorobotics, 2017, pp. 421–425. doi: 10.1007/978-3-319-46532-6_69.

[77] R. Steger, Sung Hoon Kim, and H. Kazerooni, “Control scheme and networked control architecture for the Berkeley lower extremity exoskeleton (BLEEX),” in Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006., IEEE, 2006, pp. 3469–3476. doi: 10.1109/ROBOT.2006.1642232.

[78] Xiuxia Yang, Zhang Yi, Zhiyong Yang, Lihua Gui, and Wenjin Gu, “Human-machine intelligent robot system control based on study algorithm,” in 2008 IEEE International Conference on Industrial Technology, IEEE, Apr. 2008, pp. 1–6. doi: 10.1109/ICIT.2008.4608502.

[79] V. Lippi, A. Filippeschi, C. Camardella, F. Porcini, C. Maurer, and L. Lencioni, “EXOSMOOTH: Test of Innovative EXOskeleton Control for SMOOTH Assistance, With and Without Ankle Actuation,” in *2022 17th ACM/IEEE International Conference on Human-Robot Interaction (HRI)*, IEEE, Mar. 2022, pp. 890–894. doi: 10.1109/HRI53351.2022.9889378.

[80] C. Camardella, F. Porcini, A. Filippeschi, S. Marcheschi, M. Solazzi, and A. Frisoli, “Gait Phases Blended Control for Enhancing Transparency on Lower-Limb Exoskeletons,” IEEE Robot. Autom. Lett., vol. 6, no. 3, pp. 5453–5460, July 2021, doi: 10.1109/LRA.2021.3075368.

[81] C. Camardella et al., “User-Centered Evaluation of the Wearable Walker Lower Limb Exoskeleton; Preliminary Assessment Based on the Experience Protocol,” Sensors, vol. 24, no. 16, p. 5358, Aug. 2024, doi: 10.3390/s24165358.

[82] F. Zhang et al., “sEMG-based continuous estimation of joint angles of human legs by using BP neural network,” Neurocomputing, vol. 78, no. 1, pp. 139–148, Feb. 2012, doi: 10.1016/j.neucom.2011.05.033.

[83] K. L. Poggensee and S. H. Collins, “How adaptation, training, and customization contribute to benefits from exoskeleton assistance,” Sci. Robot., vol. 6, no. 58, Sept. 2021, doi: 10.1126/scirobotics.abf1078.

[84] H. J. Asl, T. Narikiyo, and M. Kawanishi, “An Assist-as-Needed Velocity Field Control Scheme for Rehabilitation Robots,” in *2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)*, IEEE, Oct. 2018, pp. 3322–3327. doi: 10.1109/IROS.2018.8594244.

[85] A. Martinez, B. Lawson, C. Durrough, and M. Goldfarb, “A Velocity-Field-Based Controller for Assisting Leg Movement During Walking With a Bilateral Hip and Knee Lower Limb Exoskeleton,” IEEE Trans. Robot., vol. 35, no. 2, pp. 307–316, Apr. 2019, doi: 10.1109/TRO.2018.2883819.

[86] H. J. Asl, T. Narikiyo, and M. Kawanishi, “Neural network velocity field control of robotic exoskeletons with bounded input,” in 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM), IEEE, July 2017, pp. 1363–1368. doi: 10.1109/AIM.2017.8014208.

[87] A. Martinez, B. Lawson, and M. Goldfarb, “A Velocity-Based Flow Field Control Approach for Reshaping Movement of Stroke-Impaired Individuals with a Lower-Limb Exoskeleton,” in 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), IEEE, July 2018, pp. 2797–2800. doi: 10.1109/EMBC.2018.8512807.

[88] H. J. Asl, M. Yamashita, T. Narikiyo, and M. Kawanishi, “Field-Based Assist-as-Needed Control Schemes for Rehabilitation Robots,” IEEE/ASME Trans. Mechatron., vol. 25, no. 4, pp. 2100–2111, Aug. 2020, doi: 10.1109/TMECH.2020.2992090.

[89] J. Zhou, H. Peng, S. Su, and R. Song, “Spatiotemporal Compliance Control for a Wearable Lower Limb Rehabilitation Robot,” IEEE Trans. Biomed. Eng., vol. 70, no. 6, pp. 1858–1868, June 2023, doi: 10.1109/TBME.2022.3230784.

[90] D. P. Losey and M. K. O’Malley, “Trajectory Deformations From Physical Human–Robot Interaction,” IEEE Trans. Robot., vol. 34, no. 1, pp. 126–138, Feb. 2018, doi: 10.1109/TRO.2017.2765335.

[91] J. Zhou, Z. Li, X. Li, X. Wang, and R. Song, “Human–Robot Cooperation Control Based on Trajectory Deformation Algorithm for a Lower Limb Rehabilitation Robot,” IEEE/ASME Trans. Mechatron., vol. 26, no. 6, pp. 3128–3138, Dec. 2021, doi: 10.1109/TMECH.2021.3053562.

[92] F. Li, Y. He, J. Li, J. Ni, and X. Wu, “A data-driven shared control system for exoskeleton rehabilitation robot,” in *2021 IEEE International Conference on Real-time Computing and Robotics (RCAR)*, IEEE, July 2021, pp. 899–904. doi: 10.1109/RCAR52367.2021.9517363.

[93] Z. Peng et al., “Data-Driven Optimal Assistance Control of a Lower Limb Exoskeleton for Hemiplegic Patients,” Front. Neurorobotics, vol. 14, no. July, pp. 1–10, July 2020,10.3389/fnbot.2020.00037.

[94] Z. Peng et al., “Data-Driven Reinforcement Learning for Walking Assistance Control of a Lower Limb Exoskeleton with Hemiplegic Patients,” in 2020 IEEE International Conference on Robotics and Automation (ICRA), IEEE, May 2020, pp. 9065–9071. doi: 10.1109/ICRA40945.2020.9197229.

Cómo citar

APA

González Mejia, S., y Ramírez-Scarpetta, J. M. (2025). Exploring Control Approaches for Robot-Based Gait Rehabilitation and Locomotion Assistance: A Comprehensive Review. Tecnura, 29(85), 130–172. https://doi.org/10.14483/22487638.23473

ACM

[1]
González Mejia, S. y Ramírez-Scarpetta, J.M. 2025. Exploring Control Approaches for Robot-Based Gait Rehabilitation and Locomotion Assistance: A Comprehensive Review. Tecnura. 29, 85 (sep. 2025), 130–172. DOI:https://doi.org/10.14483/22487638.23473.

ACS

(1)
González Mejia, S.; Ramírez-Scarpetta, J. M. Exploring Control Approaches for Robot-Based Gait Rehabilitation and Locomotion Assistance: A Comprehensive Review. Tecnura 2025, 29, 130-172.

ABNT

GONZÁLEZ MEJIA, Sergey; RAMÍREZ-SCARPETTA, José Miguel. Exploring Control Approaches for Robot-Based Gait Rehabilitation and Locomotion Assistance: A Comprehensive Review. Tecnura, [S. l.], v. 29, n. 85, p. 130–172, 2025. DOI: 10.14483/22487638.23473. Disponível em: https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/23473. Acesso em: 20 ene. 2026.

Chicago

González Mejia, Sergey, y José Miguel Ramírez-Scarpetta. 2025. «Exploring Control Approaches for Robot-Based Gait Rehabilitation and Locomotion Assistance: A Comprehensive Review». Tecnura 29 (85):130-72. https://doi.org/10.14483/22487638.23473.

Harvard

González Mejia, S. y Ramírez-Scarpetta, J. M. (2025) «Exploring Control Approaches for Robot-Based Gait Rehabilitation and Locomotion Assistance: A Comprehensive Review», Tecnura, 29(85), pp. 130–172. doi: 10.14483/22487638.23473.

IEEE

[1]
S. González Mejia y J. M. Ramírez-Scarpetta, «Exploring Control Approaches for Robot-Based Gait Rehabilitation and Locomotion Assistance: A Comprehensive Review», Tecnura, vol. 29, n.º 85, pp. 130–172, sep. 2025.

MLA

González Mejia, Sergey, y José Miguel Ramírez-Scarpetta. «Exploring Control Approaches for Robot-Based Gait Rehabilitation and Locomotion Assistance: A Comprehensive Review». Tecnura, vol. 29, n.º 85, septiembre de 2025, pp. 130-72, doi:10.14483/22487638.23473.

Turabian

González Mejia, Sergey, y José Miguel Ramírez-Scarpetta. «Exploring Control Approaches for Robot-Based Gait Rehabilitation and Locomotion Assistance: A Comprehensive Review». Tecnura 29, no. 85 (septiembre 30, 2025): 130–172. Accedido enero 20, 2026. https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/23473.

Vancouver

1.
González Mejia S, Ramírez-Scarpetta JM. Exploring Control Approaches for Robot-Based Gait Rehabilitation and Locomotion Assistance: A Comprehensive Review. Tecnura [Internet]. 30 de septiembre de 2025 [citado 20 de enero de 2026];29(85):130-72. Disponible en: https://revistas.udistrital.edu.co/index.php/Tecnura/article/view/23473

Descargar cita

Visitas

19

Dimensions


PlumX


Descargas

Los datos de descargas todavía no están disponibles.

Artículos más leídos del mismo autor/a

Loading...